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Step 1
– Problems –

I It seems like there is a whole zoo of linear algebra problems.
Can we put them all in one joint description?
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Problem Setting
Starting from the basics

Want to find x ∈ RM in

Aᵀx = b,
with A ∈ RM×N, b ∈ RN. For simple exposition, I will assume A has full rank (but can be rectangular).

What your teacher told you:

Underspecified If M > N and rk(A) = N, then there are are many possible solutions x∗. We then
regularize to find

x∗ = arg min
x∈RM

‖Aᵀx−b‖2+‖x−µ‖2Σ−1 with ‖v‖2Σ−1 := vᵀΣ−1v;µ ∈ RM,Σ � 0 ∈ RM×M

Nonsingular If M = N and rk(A) = N, then there is a unique solution x∗ = A−Tb

Overspecified IfM < N and rk(A) = M, then there are no solutions. We find the least-squares solution

x∗ = arg min
x∈RM

‖Aᵀx− b‖2
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What your teacher didn’t tell you
regularized least-squares unifies linear problems

Under- over- and well-specified problems can all be subsumed as special cases of the regularized
least-squares problem

x∗ = arg min
x∈RM

‖Aᵀx− b‖2Λ−1 + ‖x− µ‖2Σ−1 with Σ−1,Λ−1 � 0

solved by

x∗ = (AΛ−1Aᵀ +Σ−1)−1(AΛ−1b+Σ−1µ) = µ+ΣA(AᵀΣA+ Λ)−1(b− Aᵀµ)

Underspecified: special case of Λ−1 = I.

Nonsingular: special case of Σ−1 = 0.

Over-specified: special case of Σ−1 = 0, Λ−1 = I.
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Why this matters
beyond raw linear algebra expressions, the equations need interpretation

I Aᵀx = b, whether under-, over-, or well-posed, can be solved as a regularized problem

x∗ = arg min
x∈RM

‖Aᵀx− b‖2Λ−1 + ‖x− µ‖2Σ−1 = (AΛ−1Aᵀ +Σ−1)−1(AΛ−1b+Σ−1µ)

I Regularization and Pseudoinverses provide canonical solutions to the over- and underdetermined
cases, respectively. But they leave questions on the table:
I What is the right choice of µ,Σ? What is the interpretation of the regularized estimate?
I What about the residuals b− Aᵀx∗ of the least-squares solution? Shouldn’t they, and thus Λ be part of

the interpretation of the solution?

I In both cases, uncertainty provides an answer:
I We need to regularize because the b does not provide enough information to pin down a unique x.

We are uncertain about the “true” x.
I If we actually believe a true x exists, then Aᵀx = b can not be perfectly true.

We are uncertain about the “true” b, or the validity of the equation Aᵀx = b.

I There are many possible ways to assign semantic meaning (“causes”) to this uncertainty. But one
universal way to formalize it…

Gaussians and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08/04/2024 5

https://creativecommons.org/licenses/by-sa/4.0/


The Probabilistic Interpretation
prior and likelihood lead to a universal solution

I The regularizer becomes a prior encoding explicit uncertainty about the true x:

p(x | µ,Σ) = 1

(2π)m/2|Σ|
exp(−1

2
(x− µ)ᵀΣ−1(x− µ))

= N (x;µ,Σ)

I The least-squares problem becomes a likelihood encoding that we are uncertain about its validity:

p(b | x, A,Λ) = 1

(2π)n/2|Λ|
exp(−1

2
(Aᵀx− b)ᵀΛ−1(Aᵀx− b))

= N (b; Aᵀx,Λ)

I The regularized least-squares solution becomes the mode / mean of the posterior. Model
mismatch is captured in the evidence:

p(x | b, A,Λ, µ,Σ) = p(b | x, A,Λ)p(x | µ,Σ)
p(b | A,Λ, µ,Σ)

=
N (b; Aᵀx,Λ)N (x;µ,Σ)

N (b; Aᵀµ,Λ + AᵀΣA)

= N (x; x∗, (AΛ
−1Aᵀ +Σ−1)−1)
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Gaussian Inference
The basic mechanism used across not just this talk

Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem: Let f ∼ N (m, k) be a Gaussian random variable and A a bounded linear operator. Then

Aᵀf ∼ N (Aᵀm, AᵀkA)

Let ε ∈ N (ν,Λ) be a RN valued Gaussian random vector independent of f . Then, for any b ∈ RN,

f | (Aᵀf + ε = b) ∼ N (mf|b, kf|b) with conditional moments

mf|b = m+ (Aᵀk)ᵀ(AᵀkA+ Λ)†(b− (Aᵀm+ ν)) and

kf|b = k − (Aᵀk)ᵀ(AᵀkA+ Λ)†Aᵀk
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Step 2
– Algorithms –

So far:

I All linear problems of the form Aᵀx = b can be phrased as Gaussian inference problems.

I All assumptions are spelled out in the generative model (prior and likelihood).

I Uncertainty from under-specification can be captured in the posterior.

I The errors necessary to explain residuals (especially in over-specified problems) can be captured
in the likelihood.

However, to solve Gaussian inference problems computationally (and thus all linear problems!), we still
need to solve (albeit well-posed, symmetric positive definite) linear systems. Does the probabilistic for-
mulation also tell us how to do these computations?
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The classic numerical perspective on Aᵀx = b
Numerical solvers and matrix decompositions

I To solve a single problem once, we might call (for nonsingular and rectangular A, respectively)

x = np.linalg.solve(A.T,b) or x = np.linalg.lstsq(A.T,b)

I To solve many problems with the same A but different b, we can save time by first computing a
matrix decomposition of Aᵀ, e.g.� �

1 import numpy as np

2

3 def solver(A): # for A in M x N

4 Q,D,Ut = np.linalg.svd(A.T, full_matrices=False)

5 return lambda b: Ut.T @ (Q.T @ b / D)

6

7 slv = solver(A) # pre-compute at O(MN^2)

8 x1 = slv(b1); x2 = slv(b2); x3 = slv(b3) # this is now cheap� �
I What is the relationship of these methods to probabilistic inference? There are many different

decompositions (LU, Cholesky, QR, SVD, etc.) applying to special cases (square A, symmetric
positive definite, etc.).
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Setup
to simplify exposition

Aᵀx = b, A ∈ RM×N, x ∈ RM, b ∈ RN

In the following, I will assume

I full-rank A (i.e. the N columns of A are linearly independent). This is just for convenience.
Redundant columns in A can be detected by solvers at runtime, but this makes the code messier.

I N ≤ M – this underspecified case has close connections to numerical methods. If N > M, the
inference aspect is more obvious, and covered above. The standard least-squares solution
(Λ_ 0) can be recovered (assuming full-rank A) by applying the following results to

(AAᵀ)x = Ab
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Sequential updates
a close look at Gaussian conditioning, cleaning up notation

Consider a sequence of trustworthy observations aᵀi x = bi ∈ R, from prior x ∼ N (µ0,Σ0).
I After the first observation aᵀ1x = b1, posterior mean and covariance are

µ1 = µ0 +Σ0a1(a
ᵀ
1Σ0a1)

−1(b1 − aᵀ1µ0) = µ0 + u1
b1 − aᵀ1µ0

L11

Σ1 = Σ0 − Σ0a1(a
ᵀ
1Σ0a1)

−1aᵀ1Σ0 = Σ0 − u1
1

L11
uᵀ1

using u1 := Σ0a1, L11 := aᵀ1Σ0a1 = aᵀ1u1.
I After the second observation aᵀ2x = b2, we have (using uk := Σk−1ak , Lkk := aᵀ

k
Σk−1ak = aᵀ

k
uk.)

µ2 = µ1 +Σ1a2(a
ᵀ
2Σ1a2)

−1(b2 − aᵀ2µ1) = µ1 + u2
b2 − aᵀ2µ1

L22

Σ2 = Σ1 − Σ1a2(a
ᵀ
2Σ1a2)

−1aᵀ2Σ1 = Σ1 − u2
1

L22
uᵀ2

It looks like we may get away without calling a linear solver. There must be a catch. What are the
objects we need to store, and how expensive are the computations?
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Sequential updates
a close look at Gaussian conditioning, cleaning up notation

Consider a sequence of trustworthy observations aᵀi x = bi ∈ R, from prior x ∼ N (µ0,Σ0).
I After the first observation aᵀ1x = b1, posterior mean and covariance are

µ1 = µ0 +Σ0a1(a
ᵀ
1Σ0a1)

−1(b1 − aᵀ1µ0) = µ0 + u1
b1 − aᵀ1µ0

L11

Σ1 = Σ0 − Σ0a1(a
ᵀ
1Σ0a1)

−1aᵀ1Σ0 = Σ0 − u1
1

L11
uᵀ1

using u1 := Σ0a1, L11 := aᵀ1Σ0a1 = aᵀ1u1.
I After the i-th observation aᵀi x = bi, we have (using ui := Σi−1ai, Lii := aᵀi Σi−1ai = aᵀ

k
uk.)

µi = µi−1 +Σi−1ai(a
ᵀ
i Σi−1ai)

−1(bi − aᵀi µi−1) = µi−1 + ui
bi − aᵀi µi−1

Lii

Σi = Σi−1 − Σi−1ai(a
ᵀ
i Σi−1ai)

−1aᵀi Σi−1 = Σi−1 − ui
1

Lii
uᵀ
k

It looks like we may get away without calling a linear solver. There must be a catch. What are the
objects we need to store, and how expensive are the computations?
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Solving one system, or all of them?
Precomputing solver structures

Lij = aᵀi Σj−1aj = aᵀi uj for j ≤ i ui =
1√

aᵀi Σi−1ai
Σi−1ai =

1√
aᵀi Σi−1ai

Σ0ai −
∑
j<i

ujLjj


Σi = Σi−1 − uiu

ᵀ
i = Σ0 −

∑
j≤i

uju
ᵀ
j

µi = µi−1 + ui
bi − aᵀi µi−1

Lii︸ ︷︷ ︸
=:δi

= µ0 +
∑
j≤i

ujδj

with δi :=
bi − aᵀi µi−1

Lii
= bi − aᵀi µ0 −

∑
j<i

Lijδj

Observations:Observations:Observations:Observations:Observations:Observations:Observations:Observations:Observations:Observations:Observations:Observations:Observations:Observations:Observations:Observations:Observations:
I The sequence of ui, Lij has compute costO(M(1/2i(i− 1)) = O(Mi2) (recall ai ∈ RM).
I We can actually construct ui and Lij (thus, Σi) without touching b. Once the sequence has run, we

can compute the posterior mean for any b inO(Mi).
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Building a solver
Note: naïve implementation. In practice, we don’t have to storeΣ and µ explicitly; (U, L, δ) is enough.� �

1 Σ_0 = diagm(0 => ones(M)) # prior covariance

2

3 ## construct solver structure in O(M*N^2)

4 L = LowerTriangular(zeros(N, N)) # storage

5 U = zeros(M, N) # storage

6 Σ = Σ_0

7 for i in 1:N

8 y = A[:,i] # O(N)

9 u = Σ * y # O(M^2) <-- !

10 u /= √(u' * y) # O(M)

11 U[:, i] = u # O(M)

12 L[i, 1:i] = y' * U[:, 1:i] # O(Mi)

13 Σ -= (u * u') # O(M^2) <-- !

14 end # whole loop is O(M^2N)

15

16 ## solve A'x = b in O(M*N)

17 μ_0 = zeros(M) # prior mean

18 δ = zeros(N) # storage for updates

19 μ = μ_0

20 for i in 1:N

21 δ[i] = (S[:, i]' * b - A[:, i]' * μ_0 - L[i, 1:i-1]' * δ[1:i-1]) / L[i,i] # O(M)

22 μ += U[:, i] * δ[i] # O(M)

23 end # whole loop is O(MN)� �
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Inference is any-time, if you track uncertainty
The value of the posterior

I Given A ∈ RM×N, we can run one pre-processing step in O(M2N) to compute U ∈ RM×M and the
lower triangular L ∈ RN×N. Afterward, we can perform inference on any x ∈ RM from
Aᵀx = b ∈ RN in O(MN) by building δ ∈ RN.

I This is analogous to the notion of a matrix decomposition. (In fact, more below …)

I There is no problem with stopping the process at any i < N

I The posterior captures the resulting “uncertainty” about x. (We have ignored how to choose
µ0,Σ0 so far, let’s assume they are “reasonable”)
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– Demo –
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Some special choices
Stability and efficiency

Lij = aᵀi Σj−1aj = aᵀi uj for j ≤ i ui =
1√

aᵀi Σi−1ai
Σi−1ai =

1√
aᵀi Σi−1ai

Σ0ai −
∑
j<i

ujLij


So far, we have assumed a general priorN (x;µ0,Σ0). Let’s consider the special choice Σ0 = IM.
I u1 = Σ0a1/

√
aᵀ1Σ0a1 = a1/‖a1‖, L11 = aᵀ1u1 = ‖a1‖. Note that ‖u1‖ = 1.

I u2 = 1√
a
ᵀ
2Σ1a2

(a2 − u1(u
ᵀ
1a2)), thus we find uᵀ1u2 = (uᵀ1a2 − 1 · uᵀ1u2)/

√
uᵀ2a1 = 0. Now,

L22 = aᵀ2u2 6= ‖a2‖, but ‖u2‖ = 1
I ui ∝ ai −

∑
j<i ujLij. By induction: u

ᵀ
k
ui = uᵀ

k
ai − 1 · uᵀ

k
ai = 0 and ‖uk‖ = 1.

This is the Gram-Schmidt process. If simply rename Q = U and R = LT , then Q has orthonormal
columns (QᵀQ = I), R is upper triangular, and

[QR]ij = [ULᵀ]ij =
∑
k

uika
ᵀ
j uk = Aij

For Σ0 = I, our algorithm computes the QR decomposition of A. Reassuring!
(For general spd Σ0, the columns of Q are Σ−1

0 conjugate, rather than orthogonal)
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A Generalization
Who says we have to use the columns of A as given?

I On second thought, it seems arbitrary to go through the columns of A in order. Why not choose the
projections si in a way that makes the updates easier?

I More generally, we can choose to “observe” the sequence sᵀi A
ᵀx = sᵀi b for any si ∈ RN. In the

code, we replace ai _ Asi =: yi, and bi _ sᵀi b = βi.

Lij = yᵀi Σj−1yj = yᵀi uj for j ≤ i ui =
1√

yiΣi−1yi
Σi−1yi =

1√
yiΣi−1yi

Σ0yi −
∑
j<i

ujLij


I This requires that we store the si in a matrix S (to compute the βi), which seems like it may require

extra storage. We also need to construct si somehow, following a policy.

I On the upside, maybe we can choose the si such that the process becomes
I more stable to numerical errors (e.g., maybe we can improve the condition number of L), or easier to

store
I more efficient (e.g., maybe we can make the sequence of posterior means converge towards x faster)

Gaussians and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08/04/2024 17

https://creativecommons.org/licenses/by-sa/4.0/


Choice I
picking directions that improve L

Let’s start again with s1 = e1, but then choose the following si such that L becomes diagonal:

s1 := e1, y1 = As1 = a1 u1 = Σ0y1 L11 = yᵀ1Σ0y1 = yᵀ1u1

set R12 = aᵀ2u1 and choose:

s2 := e2 − R11e1 y2 = As2 = a2 − R11y1 u2 = Σ1y2 L21 = yᵀ2u1 = aᵀ2u1 − aᵀ2u1 = 0

set Rij = aᵀj uiand choose:

si := ei −
i−1∑
j=1

Rijej yi = Asi = ai −
i−1∑
j=1

Rijyj ui = Σi−1yi Lii = yᵀi ui

I Under this choice, L is diagonal. So we do not have to store it explicitly anymore (we can store the
diagonal in the diagonal of R). However, now we have to store the upper triangular R.
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Choice I
picking directions that improve L

s1 := e1 set Rij = aᵀj ui si := ei −
i−1∑
j=1

Rijej

I Under this choice, L is diagonal. So we do not have to store it explicitly anymore (we can store the
diagonal in the diagonal of R). However, now we have to store the upper triangular R.

I Note that S is evidently also triangular, with ones on the diagonal.
I Computing the posterior mean now simplifies to

µi = µ0 +
∑
j≤i

ujδj δi =

sᵀi b− yᵀi µ0 −
∑
j<i

Lijδj

 /Ri,i = sᵀi b− yᵀi µ0

For µ0 = 0, it is now a two-part process, to compute βi = sᵀi b, and then µi =
∑

j≤i ujβj.

I We can also save a bit of space in U and store it as a lower triangular matrix (left as an exercise).
I For Σ0 = I, this yields the LU decomposition of A. If A is symmetric positive definite, we can get

rid of half the memory / compute, and get the Cholesky decomposition.
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Choice II
picking directions that speed up convergence

I Given a particular b, our prior mean µ0 yields an initial residual

r0 = b− Aᵀµ0

which seems like an informative choice for the first direction s1 = r0.

I After the first iteration (y1 = As1 = Ar0, u1 = Σ0y1), we have posterior mean

µ1 = µ0 + u1
sᵀ1b− yᵀ1µ0

yᵀ1u1

and the new residual is orthogonal to the old one: r1 = b− Aᵀµ1 = r0 − s1s
ᵀ
1 r0. We can thus

choose s2 = r1 (or s2 = r1 − s1
r
ᵀ
1 s1
s
ᵀ
1 s1

).

I For symmetric semidefinite A, Σ0 = I, this is the Conjugate Gradient method (up to
implementation details). In general, it is a Krylov-Subspace method.
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Preconditioning
Prior knowledge helps stability and convergence

How should we choose Σ0?
I We saw that Σ0 = I makes close connections to classic decompositions. More generally:
I The basic algorithm (si = ei) computes a QR decomposition of A for Σ0 = I.
I In conjugate gradients, the first update is

µ1 = µ0 + u1 ·
sᵀ1b− yᵀ1µ0

yᵀ1u1
= µ0 +Σ0Ar0 ·

rᵀ0b− rᵀ0Aµ0

rᵀ0AΣ0Aᵀr0

If we manage to pick Σ0 = (AAᵀ)−1, we get µ1 = (AAᵀ)−1Ab, the solution to the normal
equations.

I Under the same choice, the prior uncertainty becomes scalable. Say A is spd. Then:

xᵀ(AAᵀ)−1x = ‖b‖2

So given a b, we can pre-scale it to have unit norm, and get meaningful uncertainty.

Σ−1/2 is associated with the pre-conditioner in classic methods. We should aim to pick Σ ≈ (AAᵀ)−1

for good uncertainty calibration and fast convergence of iterative solvers.
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What I haven’t told you
Calibrating uncertainty

I So far, nothing guarantees us that the posterior p(x | A, b) = N (µ,Σ) is calibrated, i.e. that

(x∗ − µ)ᵀΣ†(x∗ − µ) = tr(Σ†(x∗ − µ)(x∗ − µ)ᵀ) ∼ M

I Calibration – picking µ0,Σ0 – is a new, separate task for probabilistic solvers.

I Some pointers in papers listed at the end.
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Step 3
– From vectors [xi] to functions f(x) –

I Common matrix decompositions amount to specific policies for the collection of observations.
In this sense, matrix decompositions are data loaders.

I Implemented as Gaussian inference, these algorithms become anytime, and quantify uncertainty.

I Projections si can be actively chosen from a policy to improve stability and convergence.

I The prior covariance Σ0 amounts simultaneously to pre-conditioning and uncertainty calibration.

The final piece: all these methods can be implemented lazily, and thus also work on functions.
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Gaussian Inference – again
general form proof in Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022

Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem: Let f ∼ N (m, k) be a Gaussian random variable and A a bounded linear operator. Then

Aᵀf ∼ N (Aᵀm, AᵀkA)

Let ε ∈ N (ν,Λ) be a RN valued Gaussian random vector independent of f . Then, for any b ∈ RN,

f | (Aᵀf + ε = b) ∼ N (mf|b, kf|b) with conditional moments

mf|b = m+ (Aᵀk)ᵀ(AᵀkA+ Λ)†(b− (Aᵀm+ ν)) and

kf|b = k − (Aᵀk)ᵀ(AᵀkA+ Λ)†Aᵀk
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Gaussian Inference – again
general form proof in Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022Pförtner et al., 2022

Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem:Theorem: Let f ∼ GP(m, k) be a Gaussian process with index set X on the probability space (Ω,F , P),
whose paths lie in a real separable reproducing kernel Banach space B ⊂ RX, such that ω 7→ f(·, ω) is
a B-valued Gaussian random variable. And let A be a bounded linear operator. Then

Aᵀf ∼ N (Aᵀm, AᵀkA)

Let ε ∈ N (ν,Λ) be a RN valued Gaussian random vector independent of f . Then, for any b ∈ RN,

f | (Aᵀf + ε = b) ∼ N (mf|b, kf|b) with conditional moments

mf|b = m+ (Aᵀk)ᵀ(AᵀkA+ Λ)†(b− (Aᵀm+ ν)) and

kf|b = k − (Aᵀk)ᵀ(AᵀkA+ Λ)†Aᵀk

where, for two bounded linear operators A : B _ RN, Ã : B _ RÑ, the N× Ñ matrix AᵀkÃ has entries

[AᵀkÃ]ij = A[x 7→ Ã[k(x, ·)]j]i
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Learning Functions
The functional programming perspective on functional analysis

I So far, we considered a concrete vector x ∈ RM, for which we assume the priorN (x;µ0,Σ0).

I Given a finite set of linear projections Aᵀx = b, we pick a sequence of projections
yᵀi x = sᵀi A

ᵀx = sᵀi b to iteratively update the posterior mean and covariance:

µi = µi−1 +Σi−1Asi
1

sᵀi A
ᵀΣi−1Aᵀsi

(sᵀi b− sᵀi A
ᵀµi−1) = µi−1 + ui

δi(b)

Lii
and

Σi = Σi−1 − Σi−1Asi
1

sᵀi A
ᵀΣi−1Aᵀsi

sᵀi A
ᵀΣi−1 = Σi−1 − ui

1

Lii
uᵀi

I Recall that [Σi]v,w = cov|Aᵀ
:,:i

x=b:i(xv, xw). Consider a covariance function (aka. positive definite

kernel) k(v,w) = cov(xv, xw) used to build Σ0, and a mean function µ0(v). Then constructing
Σ0As0 is a partial evaluation (or currying) of k. The update is a closure of the function k. So long
as we can compute this closure, we can construct a functional solver that lazily pre-computes the
solution operator to predict arbitrary elements of x, from arbitrary observations β.

I In particular, x does not have to be finite, but can be a function itself.
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Learning Functions
The functional programming perspective on functional analysis

µi(•) = µi−1(•) + u(•)δi(b) and
Σi(•, ◦) = Σi−1(•, ◦)− ui(•)uᵀi (◦)

I For example, consider Asi = δ(z− zi), the point evaluation function at zi.
Then ui(•) = k(•, zi)/

√
Lii with Lii = k(zi, zi) > 0.

I Consider a function f(z) and sᵀi Af = ∇2f(zi) =
∂2f(z)
∂z21

∣∣∣
z=zi

+ ∂2f(z)
∂z22

∣∣∣
z=zi

+ ∂2f(z)
∂z23

∣∣∣
z=zi

. Then

ui(•) = L−1
ii

3∑
d=1

∂k(•, z)
∂z2

d

∣∣∣∣
z=zi

: R3 _ R with Lii =

3∑
c=1

3∑
d=1

∂2∂2k(zi, zi)

∂z2c∂z
2
d

∣∣∣∣
z=zi

∈ R+

and we can encode that Poisson’s equation∇2f = g holds at point zi, for arbitrary forces g(z),
without discretizing the solution f , and predict the solution at any point z.

I More in Pförtner et al. (2022)Pförtner et al. (2022)Pförtner et al. (2022)Pförtner et al. (2022)Pförtner et al. (2022)Pförtner et al. (2022)Pförtner et al. (2022)Pförtner et al. (2022)Pförtner et al. (2022)Pförtner et al. (2022)Pförtner et al. (2022)Pförtner et al. (2022)Pförtner et al. (2022)Pförtner et al. (2022)Pförtner et al. (2022)Pförtner et al. (2022)Pförtner et al. (2022), and the next talks.
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Learning Functions
The functional programming perspective on functional analysis
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Want to know more?
Some reading

I Philipp Hennig
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Summary: Linear Algebra and Gaussian Inference

I All linear problems (over- & under-specified, well-posed) are
special cases of Gaussian inference.

I Inference itself realizes the solution operator – common matrix
decompositions amount to specific policies for the collection of
observations. In this sense, matrix decompositions are data
loaders.

I When implemented as Gaussian inference, these algorithms
become anytime, and quantify an uncertainty. Calibrating this
uncertainty is about picking the right prior. It also speeds up
convergence.

I All these methods can be implemented lazily, and thus also work
on functions. This allows building meshless solvers for PDEs, and
other numerical functional analysis tasks, with uncertainty
quantification.

Download these slides:
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