THE GAUSSIAN PERSPECTIVE ON LINEAR ALGEBRA COMPUTATION AS DATA PROCESSING

Philipp Hennig

Probnum Spring School 2024, Southampton

8 April 2024

Step 1 – Problems –

It seems like there is a whole zoo of linear algebra problems. Can we put them all in one joint description?

Problem Setting Starting from the basics

Want to find $x \in \mathbb{R}^M$ in

$$A^{\mathsf{T}}x = b$$
,

with $A \in \mathbb{R}^{M \times N}$, $b \in \mathbb{R}^{N}$. For simple exposition, I will assume A has full rank (but can be rectangular).

What your teacher told you: Underspecified If M > N and rk(A) = N, then there are many possible solutions x_* . We then *regularize* to find

 $x_* = \underset{x \in \mathbb{R}^M}{\arg\min} \|A^{\mathsf{T}} x - b\|^2 + \|x - \mu\|_{\Sigma^{-1}}^2 \quad \text{with } \|v\|_{\Sigma^{-1}}^2 := v^{\mathsf{T}} \Sigma^{-1} v; \mu \in \mathbb{R}^M, \Sigma \succ 0 \in \mathbb{R}^{M \times M}$

Nonsingular If M = N and rk(A) = N, then there is a unique solution $x_* = A^{-T}b$ Overspecified If M < N and rk(A) = M, then there are no solutions. We find the *least-squares* solution

$$x_* = \underset{x \in \mathbb{R}^M}{\arg\min} \|A^\mathsf{T} x - b\|^2$$

regularized least-squares unifies linear problems

Under- over- and well-specified problems can all be subsumed as special cases of the **regularized least-squares** problem

$$x_* = \underset{x \in \mathbb{R}^M}{\arg\min} \|A^{\mathsf{T}} x - b\|_{\Lambda^{-1}}^2 + \|x - \mu\|_{\Sigma^{-1}}^2 \qquad \text{with } \Sigma^{-1}, \Lambda^{-1} \succ 0$$

solved by

$$X_* = (A\Lambda^{-1}A^{\mathsf{T}} + \Sigma^{-1})^{-1}(A\Lambda^{-1}b + \Sigma^{-1}\mu) = \mu + \Sigma A(A^{\mathsf{T}}\Sigma A + \Lambda)^{-1}(b - A^{\mathsf{T}}\mu)$$

Underspecified: special case of $\Lambda^{-1} = I$. Nonsingular: special case of $\Sigma^{-1} = 0$. Over-specified: special case of $\Sigma^{-1} = 0$, $\Lambda^{-1} = I$.

Why this matters

beyond raw linear algebra expressions, the equations need interpretation

 \blacktriangleright $A^{\intercal}x = b$, whether under-, over-, or well-posed, can be solved as a regularized problem

$$x_* = \underset{x \in \mathbb{R}^M}{\arg\min} \|A^{\mathsf{T}}x - b\|_{\Lambda^{-1}}^2 + \|x - \mu\|_{\Sigma^{-1}}^2 = (A\Lambda^{-1}A^{\mathsf{T}} + \Sigma^{-1})^{-1}(A\Lambda^{-1}b + \Sigma^{-1}\mu)$$

- Regularization and Pseudoinverses provide canonical solutions to the over- and underdetermined cases, respectively. But they leave questions on the table:
 - What is the *right* choice of μ , Σ ? What is the interpretation of the regularized estimate?
 - What about the residuals $b A^{T}x_{*}$ of the least-squares solution? Shouldn't they, and thus Λ be part of the interpretation of the solution?
- In both cases, uncertainty provides an answer:
 - We need to regularize because the *b* does not provide enough information to pin down a unique *x*. We are **uncertain** about the "true" *x*.
 - If we actually believe a true x exists, then $A^{T}x = b$ can not be perfectly true. We are **uncertain** about the "true" b, or the validity of the equation $A^{T}x = b$.
- There are many possible ways to assign semantic meaning ("causes") to this uncertainty. But one universal way to formalize it...

The Probabilistic Interpretation

prior and likelihood lead to a universal solution

▶ The **regularizer** becomes a **prior** encoding *explicit uncertainty* about the true *x*:

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{m/2} |\boldsymbol{\Sigma}|} \exp(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}))$$
$$= \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

> The least-squares problem becomes a likelihood encoding that we are uncertain about its validity:

$$p(b \mid x, A, \Lambda) = \frac{1}{(2\pi)^{n/2} |\Lambda|} \exp(-\frac{1}{2} (A^{\mathsf{T}} x - b)^{\mathsf{T}} \Lambda^{-1} (A^{\mathsf{T}} x - b))$$
$$= \mathcal{N}(b; A^{\mathsf{T}} x, \Lambda)$$

The regularized least-squares solution becomes the mode / mean of the posterior. Model mismatch is captured in the evidence:

$$p(x \mid b, A, \Lambda, \mu, \Sigma) = \frac{p(b \mid x, A, \Lambda)p(x \mid \mu, \Sigma)}{p(b \mid A, \Lambda, \mu, \Sigma)} = \frac{\mathcal{N}(b; A^{\mathsf{T}}x, \Lambda)\mathcal{N}(x; \mu, \Sigma)}{\mathcal{N}(b; A^{\mathsf{T}}\mu, \Lambda + A^{\mathsf{T}}\Sigma A)}$$
$$= \mathcal{N}(x; x_*, (A\Lambda^{-1}A^{\mathsf{T}} + \Sigma^{-1})^{-1})$$

The basic mechanism used across not just this talk

<u>Theorem</u>: Let $f \sim \mathcal{N}(m, k)$ be a Gaussian random variable and A a bounded linear operator. Then $A^{\mathsf{T}} f \sim \mathcal{N}(A^{\mathsf{T}} m, A^{\mathsf{T}} k A)$

Let $\varepsilon \in \mathcal{N}(\nu, \Lambda)$ be a \mathbb{R}^N valued Gaussian random vector independent of f. Then, for any $b \in \mathbb{R}^N$,

$$\begin{split} f \mid (A^{\mathsf{T}}f + \varepsilon = b) &\sim \mathcal{N}(m^{f|b}, k^{f|b}) & \text{with conditional moments} \\ m^{f|b} &= m + (A^{\mathsf{T}}k)^{\mathsf{T}}(A^{\mathsf{T}}kA + \Lambda)^{\dagger}(b - (A^{\mathsf{T}}m + \nu)) & \text{and} \\ k^{f|b} &= k - (A^{\mathsf{T}}k)^{\mathsf{T}}(A^{\mathsf{T}}kA + \Lambda)^{\dagger}A^{\mathsf{T}}k \end{split}$$

Step 2 – Algorithms –

So far:

- ► All linear problems of the form $A^{\intercal}x = b$ can be phrased as Gaussian inference problems.
- ► All assumptions are spelled out in the generative model (prior and likelihood).
- Uncertainty from under-specification can be captured in the posterior.
- The errors necessary to explain residuals (especially in over-specified problems) can be captured in the likelihood.

However, to solve Gaussian inference problems computationally (and thus all linear problems!), we *still need to solve (albeit well-posed, symmetric positive definite) linear systems*. Does the probabilistic formulation also tell us how to do these computations?

The classic numerical perspective on $A^{T}x = b$

Numerical solvers and matrix decompositions

▶ To solve a single problem once, we might call (for nonsingular and rectangular A, respectively)

```
x = np.linalg.solve(A.T,b) or x = np.linalg.lstsq(A.T,b)
```

To solve many problems with the same A but different b, we can save time by first computing a matrix decomposition of A^T, e.g.

```
1 import numpy as np
2
3 def solver(A): # for A in M x N
4     Q,D,Ut = np.linalg.svd(A.T, full_matrices=False)
5     return lambda b: Ut.T @ (Q.T @ b / D)
6
7 slv = solver(A) # pre-compute at O(MN^2)
8 x1 = slv(b1); x2 = slv(b2); x3 = slv(b3) # this is now cheap
```

What is the relationship of these methods to probabilistic inference? There are many different decompositions (LU, Cholesky, QR, SVD, etc.) applying to special cases (square A, symmetric positive definite, etc.).

$$A^{\mathsf{T}} x = b, \qquad A \in \mathbb{R}^{M \times N}, x \in \mathbb{R}^{M}, b \in \mathbb{R}^{N}$$

In the following, I will assume

- full-rank A (i.e. the N columns of A are linearly independent). This is just for convenience. Redundant columns in A can be detected by solvers at runtime, but this makes the code messier.
- N ≤ M this underspecified case has close connections to numerical methods. If N > M, the inference aspect is more obvious, and covered above. The standard least-squares solution (Λ → 0) can be recovered (assuming full-rank A) by applying the following results to

 $(AA^{\mathsf{T}})x = Ab$

Sequential updates

a close look at Gaussian conditioning, cleaning up notation

Consider a sequence of trustworthy observations $a_i^T x = b_i \in \mathbb{R}$, from prior $x \sim \mathcal{N}(\mu_0, \Sigma_0)$. After the first observation $a_1^T x = b_1$, posterior mean and covariance are

$$\mu_{1} = \mu_{0} + \Sigma_{0} a_{1} (a_{1}^{\mathsf{T}} \Sigma_{0} a_{1})^{-1} (b_{1} - a_{1}^{\mathsf{T}} \mu_{0}) = \mu_{0} + u_{1} \frac{b_{1} - a_{1}^{\mathsf{T}} \mu_{0}}{L_{11}}$$
$$\Sigma_{1} = \Sigma_{0} - \Sigma_{0} a_{1} (a_{1}^{\mathsf{T}} \Sigma_{0} a_{1})^{-1} a_{1}^{\mathsf{T}} \Sigma_{0} = \Sigma_{0} - u_{1} \frac{1}{L_{11}} u_{1}^{\mathsf{T}}$$

using $u_1 := \Sigma_0 a_1, L_{11} := a_1^T \Sigma_0 a_1 = a_1^T u_1$. After the second observation $a_2^T x = b_2$, we have (using $u_k := \Sigma_{k-1} a_k, L_{kk} := a_k^T \Sigma_{k-1} a_k = a_k^T u_k$.)

$$\mu_{2} = \mu_{1} + \Sigma_{1} a_{2} (a_{2}^{\mathsf{T}} \Sigma_{1} a_{2})^{-1} (b_{2} - a_{2}^{\mathsf{T}} \mu_{1}) = \mu_{1} + u_{2} \frac{b_{2} - a_{2}^{\mathsf{T}} \mu_{1}}{L_{22}}$$
$$\Sigma_{2} = \Sigma_{1} - \Sigma_{1} a_{2} (a_{2}^{\mathsf{T}} \Sigma_{1} a_{2})^{-1} a_{2}^{\mathsf{T}} \Sigma_{1} = \Sigma_{1} - u_{2} \frac{1}{L_{22}} u_{2}^{\mathsf{T}}$$

Sequential updates

a close look at Gaussian conditioning, cleaning up notation

Consider a sequence of trustworthy observations $a_i^T x = b_i \in \mathbb{R}$, from prior $x \sim \mathcal{N}(\mu_0, \Sigma_0)$. After the first observation $a_1^T x = b_1$, posterior mean and covariance are

$$\mu_{1} = \mu_{0} + \Sigma_{0} a_{1} (a_{1}^{\mathsf{T}} \Sigma_{0} a_{1})^{-1} (b_{1} - a_{1}^{\mathsf{T}} \mu_{0}) = \mu_{0} + u_{1} \frac{b_{1} - a_{1}^{\mathsf{T}} \mu_{0}}{L_{11}}$$
$$\Sigma_{1} = \Sigma_{0} - \Sigma_{0} a_{1} (a_{1}^{\mathsf{T}} \Sigma_{0} a_{1})^{-1} a_{1}^{\mathsf{T}} \Sigma_{0} = \Sigma_{0} - u_{1} \frac{1}{L_{11}} u_{1}^{\mathsf{T}}$$

using $u_1 := \Sigma_0 a_1, L_{11} := a_1^T \Sigma_0 a_1 = a_1^T u_1.$ After the *i*-th observation $a_i^T x = b_i$, we have (using $u_i := \Sigma_{i-1} a_i, L_{ii} := a_i^T \Sigma_{i-1} a_i = a_k^T u_k.)$

$$\mu_{i} = \mu_{i-1} + \Sigma_{i-1}a_{i}(a_{i}^{\mathsf{T}}\Sigma_{i-1}a_{i})^{-1}(b_{i} - a_{i}^{\mathsf{T}}\mu_{i-1}) = \mu_{i-1} + u_{i}\frac{u_{i} - a_{i}^{\mathsf{T}}\mu_{i-1}}{L_{ii}}$$
$$\Sigma_{i} = \Sigma_{i-1} - \Sigma_{i-1}a_{i}(a_{i}^{\mathsf{T}}\Sigma_{i-1}a_{i})^{-1}a_{i}^{\mathsf{T}}\Sigma_{i-1} = \Sigma_{i-1} - u_{i}\frac{1}{L_{ii}}u_{k}^{\mathsf{T}}$$

It looks like we may get away without calling a linear solver. There must be a catch. What are the objects we need to store, and how expensive are the computations?

Gaussians and Linear Algebra - © Philipp Hennig, CC BY-SA 4.0 - 08/04/2024

Solving one system, or all of them?

Precomputing solver structures

$$L_{ij} = a_i^{\mathsf{T}} \Sigma_{j-1} a_j = a_i^{\mathsf{T}} u_j \text{ for } j \le i \quad u_i = \frac{1}{\sqrt{a_i^{\mathsf{T}} \Sigma_{i-1} a_i}} \Sigma_{i-1} a_i = \frac{1}{\sqrt{a_i^{\mathsf{T}} \Sigma_{i-1} a_i}} \left(\Sigma_0 a_i - \sum_{j < i} u_j L_{jj} \right)$$

$$\Sigma_i = \Sigma_{i-1} - u_i u_i^{\mathsf{T}} \qquad = \Sigma_0 - \sum_{j \le i} u_j u_j^{\mathsf{T}}$$

$$\mu_i = \mu_{i-1} + u_i \underbrace{\frac{b_i - a_i^{\mathsf{T}} \mu_{i-1}}{L_{ii}}}_{=:\delta_i} \qquad = \mu_0 + \sum_{j \le i} u_j \delta_j$$
with $\delta_i := \frac{b_i - a_i^{\mathsf{T}} \mu_{i-1}}{L_{ii}} \qquad = b_i - a_i^{\mathsf{T}} \mu_0 - \sum_{j \le i} L_{ij} \delta_j$

Observations:

- ► The sequence of u_i, L_{ij} has compute cost $\mathcal{O}(M(1/2i(i-1)) = \mathcal{O}(Mi^2)$ (recall $a_i \in \mathbb{R}^M$).
- We can actually construct u_i and L_{ij} (thus, Σ_i) without touching b. Once the sequence has run, we can compute the posterior mean for any b in $\mathcal{O}(Mi)$.

Building a solver

Note: naïve implementation. In practice, we don't have to store Σ and μ explicitly; (U, L, δ) is enough.

```
= diagm(0 => ones(M)) # prior covariance
 1 Σ_0
 3 ## construct solver structure in O(M*N^2)
 4 L = LowerTriangular(zeros(N, N)) # storage
 5 \text{ U} = \text{zeros}(M, N)
                      # storage
 6 \Sigma = \Sigma \Theta
 7 for i in 1:N
 8
       y = A[:,i] # O(N)
    u = \Sigma * y \# O(M^2) < -- !
 9
10 u /= \sqrt{(u' * y)} # O(M)

11 U[:, i] = u # O(M)

12 L[i, 1:i] = y' * U[:, 1:i] # O(Mi)
     \Sigma = (u * u') \# O(M^2) < -- !
14 end # whole loop is O(M^2N)
16 ## solve A'x = b in O(M*N)
17 \mu_0 = zeros(M) # prior mean
18 \delta = zeros(N) # storage for updates
19 u
     = u_0
20 for i in 1:N
     \delta[i] = (S[:, i]' * b - A[:, i]' * \mu_0 - L[i, 1:i-1]' * \delta[1:i-1]) / L[i,i] # O(M)
   u += U[:. i] * δ[i]
                            # O(M)
23 end # whole loop is O(MN)
```


- ► Given $A \in \mathbb{R}^{M \times N}$, we can run one pre-processing step in $O(M^2N)$ to compute $U \in \mathbb{R}^{M \times M}$ and the lower triangular $L \in \mathbb{R}^{N \times N}$. Afterward, we can perform inference on any $x \in \mathbb{R}^M$ from $A^{\intercal}x = b \in \mathbb{R}^N$ in O(MN) by building $\delta \in \mathbb{R}^N$.
- ▶ This is analogous to the notion of a matrix decomposition. (In fact, more below ...)
- There is no problem with stopping the process at any i < N
- The posterior captures the resulting "uncertainty" about x. (We have ignored how to choose μ_0, Σ_0 so far, let's assume they are "reasonable")

– Demo –

Some special choices

Stability and efficiency

$$L_{ij} = a_i^{\mathsf{T}} \Sigma_{j-1} a_j = a_i^{\mathsf{T}} u_j \text{ for } j \le i \qquad u_i = \frac{1}{\sqrt{a_i^{\mathsf{T}} \Sigma_{i-1} a_i}} \Sigma_{i-1} a_i = \frac{1}{\sqrt{a_i^{\mathsf{T}} \Sigma_{i-1} a_i}} \left(\Sigma_0 a_i - \sum_{j < i} u_j L_{ij} \right)$$

So far, we have assumed a general prior $\mathcal{N}(x; \mu_0, \Sigma_0)$. Let's consider the special choice $\Sigma_0 = I_M$. $u_1 = \Sigma_0 a_1 / \sqrt{a_1^T \Sigma_0 a_1} = a_1 / ||a_1||, L_{11} = a_1^T u_1 = ||a_1||$. Note that $||u_1|| = 1$. $u_2 = \frac{1}{\sqrt{a_2^T \Sigma_1 a_2}} (a_2 - u_1(u_1^T a_2))$, thus we find $u_1^T u_2 = (u_1^T a_2 - 1 \cdot u_1^T u_2) / \sqrt{u_2^T a_1} = 0$. Now, $L_{22} = a_2^T u_2 \neq ||a_2||$, but $||u_2|| = 1$ $u_i \propto a_i - \sum_{j < i} u_j L_{ij}$. By induction: $u_k^T u_i = u_k^T a_i - 1 \cdot u_k^T a_i = 0$ and $||u_k|| = 1$. This is the **Gram-Schmidt** process. If simply rename O = U and $R = L^T$, then O has orthonormal

columns ($Q^{\intercal}Q = I$), R is upper triangular, and

$$[QR]_{ij} = [UL^{\mathsf{T}}]_{ij} = \sum_{k} u_{ik} a_j^{\mathsf{T}} u_k = A_{ij}$$

For $\Sigma_0 = l$, our algorithm computes the QR decomposition of A. Reassuring! (For general spd Σ_0 , the columns of Q are Σ_0^{-1} conjugate, rather than orthogonal) Who says we have to use the columns of A as given?

- On second thought, it seems arbitrary to go through the columns of A in order. Why not choose the projections s_i in a way that makes the updates easier?
- ► More generally, we can *choose* to "observe" the sequence $s_i^T A^T x = s_i^T b$ for any $s_i \in \mathbb{R}^N$. In the code, we replace $a_i \rightarrow As_i =: y_i$, and $b_i \rightarrow s_i^T b = \beta_i$.

$$L_{ij} = y_i^{\mathsf{T}} \Sigma_{j-1} y_j = y_i^{\mathsf{T}} u_j \text{ for } j \le i \quad u_i = \frac{1}{\sqrt{y_i \Sigma_{i-1} y_i}} \Sigma_{i-1} y_i = \frac{1}{\sqrt{y_i \Sigma_{i-1} y_i}} \left(\Sigma_0 y_i - \sum_{j < i} u_j L_{ij} \right)$$

- This requires that we store the s_i in a matrix S (to compute the β_i), which seems like it may require extra storage. We also need to *construct* s_i somehow, following a *policy*.
- On the upside, maybe we can choose the s_i such that the process becomes
 - more stable to numerical errors (e.g., maybe we can improve the condition number of L), or easier to store
 - ▶ more efficient (e.g., maybe we can make the sequence of posterior means converge towards *x* faster)

Let's start again with $s_1 = e_1$, but then choose the following s_i such that *L* becomes diagonal:

$$\begin{split} s_{1} &:= e_{1}, & y_{1} = As_{1} = a_{1} & u_{1} = \Sigma_{0}y_{1} & L_{11} = y_{1}^{\mathsf{T}}\Sigma_{0}y_{1} = y_{1}^{\mathsf{T}}u_{1} \\ \text{set } R_{12} &= a_{2}^{\mathsf{T}}u_{1} & \text{and choose:} \\ s_{2} &:= e_{2} - R_{11}e_{1} & y_{2} = As_{2} = a_{2} - R_{11}y_{1} & u_{2} = \Sigma_{1}y_{2} & L_{21} = y_{2}^{\mathsf{T}}u_{1} = a_{2}^{\mathsf{T}}u_{1} - a_{2}^{\mathsf{T}}u_{1} = 0 \\ \text{set } R_{ij} &= a_{j}^{\mathsf{T}}u_{i} \text{and choose:} \\ s_{i} &:= e_{i} - \sum_{j=1}^{i-1} R_{ij}e_{j} & y_{i} = As_{i} = a_{i} - \sum_{j=1}^{i-1} R_{ij}y_{j} & u_{i} = \Sigma_{i-1}y_{i} & L_{ii} = y_{i}^{\mathsf{T}}u_{i} \end{split}$$

Under this choice, L is diagonal. So we do not have to store it explicitly anymore (we can store the diagonal in the diagonal of R). However, now we have to store the upper triangular R.

; 1

$$s_1 := e_1$$
 set $R_{ij} = a_j^{\mathsf{T}} u_i$ $s_i := e_i - \sum_{j=1}^{i-1} R_{ij} e_j$

- Under this choice, L is diagonal. So we do not have to store it explicitly anymore (we can store the diagonal in the diagonal of R). However, now we have to store the upper triangular R.
- ▶ Note that *S* is evidently also triangular, with ones on the diagonal.
- Computing the posterior mean now simplifies to

$$\mu_i = \mu_0 + \sum_{j \le i} u_j \delta_j \qquad \qquad \delta_i = \left(s_i^\mathsf{T} b - y_i^\mathsf{T} \mu_0 - \sum_{j < i} L_{ij} \delta_j \right) / R_{i,i} = s_i^\mathsf{T} b - y_i^\mathsf{T} \mu_0$$

For $\mu_0 = 0$, it is now a two-part process, to compute $\beta_i = s_i^T b$, and then $\mu_i = \sum_{j \le i} u_j \beta_j$.

- ▶ We can also save a bit of space in U and store it as a lower triangular matrix (left as an exercise).
- For $\Sigma_0 = I$, this yields the LU decomposition of A. If A is symmetric positive definite, we can get rid of half the memory / compute, and get the Cholesky decomposition.

• Given a particular *b*, our prior mean μ_0 yields an initial *residual*

$$r_0 = b - A^{\mathsf{T}} \mu_0$$

which seems like an informative choice for the first direction $s_1 = r_0$.

After the first iteration $(y_1 = As_1 = Ar_0, u_1 = \Sigma_0 y_1)$, we have posterior mean

$$\mu_1 = \mu_0 + u_1 \frac{s_1^{\mathsf{T}} b - y_1^{\mathsf{T}} \mu_0}{y_1^{\mathsf{T}} u_1}$$

and the new residual is orthogonal to the old one: $r_1 = b - A^{\mathsf{T}} \mu_1 = r_0 - s_1 s_1^{\mathsf{T}} r_0$. We can thus choose $s_2 = r_1$ (or $s_2 = r_1 - s_1 \frac{r_1^{\mathsf{T}} s_1}{s_1^{\mathsf{T}} s_1}$).

For symmetric semidefinite A, $\Sigma_0 = I$, this is the **Conjugate Gradient** method (up to implementation details). In general, it is a **Krylov-Subspace** method.

Prior knowledge helps stability and convergence

How should we choose Σ_0 ?

- We saw that $\Sigma_0 = I$ makes close connections to classic decompositions. More generally:
- ► The basic algorithm ($s_i = e_i$) computes a QR decomposition of A for $\Sigma_0 = I$.
- In conjugate gradients, the first update is

$$\mu_{1} = \mu_{0} + u_{1} \cdot \frac{s_{1}^{\mathsf{T}} b - y_{1}^{\mathsf{T}} \mu_{0}}{y_{1}^{\mathsf{T}} u_{1}} = \mu_{0} + \Sigma_{0} A r_{0} \cdot \frac{r_{0}^{\mathsf{T}} b - r_{0}^{\mathsf{T}} A \mu_{0}}{r_{0}^{\mathsf{T}} A \Sigma_{0} A^{\mathsf{T}} r_{0}}$$

If we manage to pick $\Sigma_0 = (AA^{\intercal})^{-1}$, we get $\mu_1 = (AA^{\intercal})^{-1}Ab$, the solution to the normal equations.

Under the same choice, the prior uncertainty becomes scalable. Say A is spd. Then:

$$x^{\mathsf{T}} (AA^{\mathsf{T}})^{-1} x = \|b\|^2$$

So given a *b*, we can pre-scale it to have unit norm, and get meaningful uncertainty.

 $\Sigma^{-1/2}$ is associated with the *pre-conditioner* in classic methods. We should aim to pick $\Sigma \approx (AA^{\intercal})^{-1}$ for good uncertainty calibration *and* fast convergence of iterative solvers.

So far, nothing guarantees us that the posterior $p(x \mid A, b) = \mathcal{N}(\mu, \Sigma)$ is *calibrated*, i.e. that

$$(\mathbf{x}_* - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{\dagger} (\mathbf{x}_* - \boldsymbol{\mu}) = \operatorname{tr}(\boldsymbol{\Sigma}^{\dagger} (\mathbf{x}_* - \boldsymbol{\mu}) (\mathbf{x}_* - \boldsymbol{\mu})^{\mathsf{T}}) \sim \boldsymbol{M}$$

- ► Calibration picking μ_0 , Σ_0 is a new, separate task for probabilistic solvers.
- Some pointers in papers listed at the end.

Step 3 – From vectors $[x_i]$ to functions f(x) –

- Common matrix decompositions amount to specific policies for the collection of observations. In this sense, matrix decompositions are data loaders.
- Implemented as Gaussian inference, these algorithms become anytime, and quantify uncertainty.
- Projections s_i can be actively chosen from a policy to improve stability and convergence.
- The prior covariance Σ_0 amounts simultaneously to pre-conditioning and uncertainty calibration.

The final piece: all these methods can be implemented lazily, and thus also work on functions.

<u>Theorem</u>: Let $f \sim \mathcal{N}(m, k)$ be a Gaussian random variable and A a bounded linear operator. Then

 $A^{\mathsf{T}} f \sim \mathcal{N}(A^{\mathsf{T}} m, A^{\mathsf{T}} k A)$

Let $\varepsilon \in \mathcal{N}(\nu, \Lambda)$ be a \mathbb{R}^N valued Gaussian random vector independent of f. Then, for any $b \in \mathbb{R}^N$,

$$\begin{split} f \mid (A^{\mathsf{T}}f + \varepsilon = b) &\sim \mathcal{N}(m^{f|b}, k^{f|b}) & \text{with conditional moments} \\ m^{f|b} &= m + (A^{\mathsf{T}}k)^{\mathsf{T}}(A^{\mathsf{T}}kA + \Lambda)^{\dagger}(b - (A^{\mathsf{T}}m + \nu)) & \text{and} \\ k^{f|b} &= k - (A^{\mathsf{T}}k)^{\mathsf{T}}(A^{\mathsf{T}}kA + \Lambda)^{\dagger}A^{\mathsf{T}}k \end{split}$$

Gaussian Inference – again

general form

universitat Tübingen

proof in Pförtner et al., 2022

<u>Theorem</u>: Let $f \sim \mathcal{GP}(m, k)$ be a Gaussian process with index set \mathbb{X} on the probability space $(\Omega, \mathcal{F}, \mathsf{P})$, whose paths lie in a real separable reproducing kernel Banach space $\mathbb{B} \subset \mathbb{R}^{\mathbb{X}}$, such that $\omega \mapsto f(\cdot, \omega)$ is a \mathbb{B} -valued Gaussian random variable. And let A be a bounded linear operator. Then

 $A^{\mathsf{T}} f \sim \mathcal{N}(A^{\mathsf{T}} m, A^{\mathsf{T}} k A)$

Let $\varepsilon \in \mathcal{N}(\nu, \Lambda)$ be a \mathbb{R}^N valued Gaussian random vector independent of f. Then, for any $b \in \mathbb{R}^N$,

$$f \mid (A^{\mathsf{T}}f + \varepsilon = b) \sim \mathcal{N}(m^{f|b}, k^{f|b}) \quad \text{with conditional moments}$$
$$m^{f|b} = m + (A^{\mathsf{T}}k)^{\mathsf{T}}(A^{\mathsf{T}}kA + \Lambda)^{\dagger}(b - (A^{\mathsf{T}}m + \nu)) \quad \text{and}$$
$$k^{f|b} = k - (A^{\mathsf{T}}k)^{\mathsf{T}}(A^{\mathsf{T}}kA + \Lambda)^{\dagger}A^{\mathsf{T}}k$$

where, for two bounded linear operators $A : \mathbb{B} \to \mathbb{R}^N, \tilde{A} : \mathbb{B} \to \mathbb{R}^{\tilde{N}}$, the $N \times \tilde{N}$ matrix $A^{\intercal} k \tilde{A}$ has entries

$$[A^{\mathsf{T}} k \tilde{A}]_{ij} = A[x \mapsto \tilde{A}[k(x, \cdot)]_j]_i$$

The functional programming perspective on functional analysis

- So far, we considered a concrete vector $x \in \mathbb{R}^M$, for which we assume the prior $\mathcal{N}(x; \mu_0, \Sigma_0)$.
- Given a finite set of linear projections $A^{T}x = b$, we pick a sequence of projections $y_i^{T}x = s_i^{T}A^{T}x = s_i^{T}b$ to iteratively update the posterior mean and covariance:

$$\mu_{i} = \mu_{i-1} + \Sigma_{i-1} A_{s_{i}} \frac{1}{s_{i}^{\mathsf{T}} A^{\mathsf{T}} \Sigma_{i-1} A^{\mathsf{T}} s_{i}} (s_{i}^{\mathsf{T}} b - s_{i}^{\mathsf{T}} A^{\mathsf{T}} \mu_{i-1}) \qquad = \mu_{i-1} + u_{i} \frac{\delta_{i}(b)}{L_{ii}} \text{ and}$$

$$\Sigma_{i} = \Sigma_{i-1} - \Sigma_{i-1} A_{s_{i}} \frac{1}{s_{i}^{\mathsf{T}} A^{\mathsf{T}} \Sigma_{i-1} A^{\mathsf{T}} s_{i}} s_{i}^{\mathsf{T}} A^{\mathsf{T}} \Sigma_{i-1} \qquad = \Sigma_{i-1} - u_{i} \frac{1}{L_{ii}} u_{i}^{\mathsf{T}}$$

- ► Recall that $[\Sigma_i]_{v,w} = \operatorname{cov}_{|A_{i,i}^T, x=b_i|}(x_v, x_w)$. Consider a covariance function (aka. positive definite kernel) $k(v, w) = \operatorname{cov}(x_v, x_w)$ used to build Σ_0 , and a mean function $\mu_0(v)$. Then constructing $\Sigma_0 A s_0$ is a *partial evaluation* (or *currying*) of k. The update is a *closure* of the function k. So long as we can compute this closure, we can construct a *functional* solver that lazily pre-computes the solution operator to **predict arbitrary elements of** x, from arbitrary observations β .
- In particular, x does not have to be finite, but can be a function itself.

$\mu_i(\bullet) = \mu_{i-1}(\bullet) + u(\bullet)\delta_i(b) \text{ and}$ $\Sigma_i(\bullet, \circ) = \Sigma_{i-1}(\bullet, \circ) - u_i(\bullet)u_i^{\mathsf{T}}(\circ)$

For example, consider $As_i = \delta(z - z_i)$, the point evaluation function at z_i . Then $u_i(\bullet) = k(\bullet, z_i)/\sqrt{L_{ii}}$ with $L_{ii} = k(z_i, z_i) > 0$.

 $\mu_i(\bullet) = \mu_{i-1}(\bullet) + u(\bullet)\delta_i(b) \text{ and}$ $\Sigma_i(\bullet, \circ) = \Sigma_{i-1}(\bullet, \circ) - u_i(\bullet)u_i^{\mathsf{T}}(\circ)$

For example, consider $As_i = \delta(z - z_i)$, the point evaluation function at z_i . Then $u_i(\bullet) = k(\bullet, z_i)/\sqrt{L_{ii}}$ with $L_{ii} = k(z_i, z_i) > 0$.

• Consider a function f(z) and $s_i^{\mathsf{T}} A f = \nabla^2 f(z_i) = \left. \frac{\partial^2 f(z)}{\partial z_1^2} \right|_{z=z_i} + \left. \frac{\partial^2 f(z)}{\partial z_2^2} \right|_{z=z_i} + \left. \frac{\partial^2 f(z)}{\partial z_3^2} \right|_{z=z_i}$. Then

$$U_{i}(\bullet) = L_{ii}^{-1} \sum_{d=1}^{3} \left. \frac{\partial k(\bullet, Z)}{\partial Z_{d}^{2}} \right|_{Z=Z_{i}} : \mathbb{R}^{3} \to \mathbb{R} \quad \text{with} \quad L_{ii} = \sum_{c=1}^{3} \sum_{d=1}^{3} \left. \frac{\partial^{2} \partial^{2} k(Z_{i}, Z_{i})}{\partial Z_{c}^{2} \partial Z_{d}^{2}} \right|_{Z=Z_{i}} \in \mathbb{R}_{+}$$

and we can encode that **Poisson's equation** $\nabla^2 f = g$ holds at point z_i , for arbitrary forces g(z), without discretizing the solution f, and predict the solution at any point z.

More in <u>Pförtner et al. (2022)</u>, and the next talks.

Want to know more?

Some reading

- Philipp Hennig <u>Probabilistic Interpretation of Linear Solvers</u> SIAM JOpt, 25(1), 2015
- Jon Cockayne, Chris J. Oates, Ilse C.F. Ipsen, Mark Girolami <u>A Bayesian Conjugate Gradient Method (with discussion)</u> Bayesian Analysis, 14(3): 937-1012
- Jonathan Wenger, Philipp Hennig <u>Probabilistic Linear Solvers for Machine Learning</u> Adv. in NeurIPS 33 (2020)
- Jonathan Wenger, Geoff Pleiss, Marvin Pförtner, Philipp Hennig, John P. Cunningham <u>Posterior and Computational Uncertainty in Gaussian Processes</u> Adv. in NeurIPS 35 (2022)
- Chapter III in Philipp Hennig, Michael A. Osborne, Hans Kersting <u>Probabilistic Numerics – Computation as Machine Learning</u> Cambridge University Press, 2022

Summary: Linear Algebra and Gaussian Inference

- All linear problems (over- & under-specified, well-posed) are special cases of Gaussian inference.
- Inference itself realizes the solution operator common matrix decompositions amount to specific policies for the collection of observations. In this sense, matrix decompositions are data loaders.
- When implemented as Gaussian inference, these algorithms become anytime, and quantify an uncertainty. Calibrating this uncertainty is about picking the right prior. It also speeds up convergence.
- All these methods can be implemented **lazily**, and thus also work on **functions**. This allows building meshless solvers for PDEs, and other numerical functional analysis tasks, with uncertainty quantification.

Download these slides:

