THE GAUSSIAN PERSPECTIVE ON LINEAR ALGEBRA
COMPUTATION AS DATA PROCESSING

Philipp Hennig

Probnum Spring School 2024, Southampton

8 April 2024

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Tiibingen Al Center
tuebingen.ai

Step 1
- Problems -

» |t seems like there is a whole zoo of linear algebra problems.
Can we put them all in one joint description?

Gaussians and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08/04/2024

https://creativecommons.org/licenses/by-sa/4.0/

Problem Setting

Starting from the basics

Want to find x € RMin
ATx = b,
with A € RN h ¢ RN For simple exposition, | will assume A has full rank (but can be rectangular).

What your teacher told you:

Underspecified If M > N and rk(A) = N, then there are are many possible solutions x... We then
regularize to find

X, = argmin [[ATx=b|>+|x—pl%- with |v]|3_, :==vTE"lv;p e RM 2 = 0 € RMM
xeRM

Nonsingular If M = N and rk(A) = N, then there is a unique solution x, = A~Tb
Overspecified If M < Nandrk(A) = M, then there are no solutions. We find the east-squares solution

X, = argmin ||ATx — b||?
XERM

s and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 0€

https://creativecommons.org/licenses/by-sa/4.0/

What your teacher didn't tell you

reqularized least-squares unifies linear problems

Under- over- and well-specified problems can all be subsumed as special cases of the regularized

least-squares problem

Xe =argmin||ATx —b|3-. + X — plE-: withS LA™ -0

xEeRM
solved by
Xo = (AATIAT " H VAN D+ 27) = p+ SAATSA + A) (b — ATp)

Underspecified: special case of A=1 = /.
Nonsingular: special case of X =1 = 0.
Over-specified: special case of X~ =0, A= = 1.

s and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08/04/2024

https://creativecommons.org/licenses/by-sa/4.0/

Why this matters

beyond raw linear algebra expressions, the equations need interpretation
» ATx = b, whether under-, over-, or well-posed, can be solved as a regularized problem

Xe = argmin [[ATX — b|3- + X — pll3o: = AATAT + 5 H 7 HAA T + B)
xeRM

> Regularization and Pseudoinverses provide canonical solutions to the over- and underdetermined
cases, respectively. But they leave questions on the table:
> What is the right choice of p, 33? What is the interpretation of the regularized estimate?
> What about the residuals b — ATx,. of the least-squares solution? Shouldn't they, and thus A be part of
the interpretation of the solution?
> In both cases, uncertainty provides an answer:
> We need to regularize because the b does not provide enough information to pin down a unique x.
We are uncertain about the “true” x.
> |f we actually believe a true x exists, then ATx = b can not be perfectly true.
We are uncertain about the “true” b, or the validity of the equation ATx = b.
> There are many possible ways to assign semantic meaning (‘causes”) to this uncertainty. But one
universal way to formalize it..

and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08/04/2024

https://creativecommons.org/licenses/by-sa/4.0/

The Probabilistic Interpretation

prior and likelihood lead to a universal solution

> The regularizer becomes a prior encoding explicit uncertainty about the true x:

1 1
Z = — —_— — T271 i
PO 18, %) = sy SAR(— 50— 0TS (= 10)
=N %)
> The least-squares problem becomes a likelihood encoding that we are uncertain about its validity:

p(b|x,AA) = exp(—%(ATx—b)TA‘l(ATx—b))

(2m)"/2|A|
= N(b;ATx, A)
> The regularized least-squares solution becomes the mode / mean of the posterior. Model
mismatch is captured in the evidence:

D0 | b.A,A, i, x5) = POLGA ADK| 1, 3) N (b ATX, MN (% 1, 32)

pb A A wY) N(b;ATu, A +ATEA)
= N (XX, AATIAT £ 57171

Gaussians and Linear Algebra = © Philipp Hennig, CC BY-SA 4.0 — 08/04/2024 6

https://creativecommons.org/licenses/by-sa/4.0/

Gaussian Inference

The basic mechanism used across not just this talk

Theorem: Let f ~ A/(m, k) be a Gaussian random variable and A a bounded linear operator. Then
ATf ~ N (ATm,ATKA)
Let e € N(v, A) be a RV valued Gaussian random vector independent of f. Then, forany b € RY,

fl(ATf +¢e=b) ~N(m'? k"P) with conditional moments
m'® =m + (ATK)T(ATkKA + AT (b — (ATm +v)) and
KNP =k — (ATK)T(ATKA + A)TATk

Gaus

s and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08/04/2024

https://creativecommons.org/licenses/by-sa/4.0/

- Algorithms -

So far:
» All'linear problems of the form ATx = b can be phrased as Gaussian inference problems.
» All assumptions are spelled out in the generative model (prior and likelihood).
» Uncertainty from under-specification can be captured in the posterior.

» The errors necessary to explain residuals (especially in over-specified problems) can be captured
in the likelihood.

However, to solve Gaussian inference problems computationally (and thus all linear problems!), we still

need to solve (albeit well-posed, symmetric positive definite) linear systems. Does the probabilistic for-
mulation also tell us how to do these computations?

nd Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08

https://creativecommons.org/licenses/by-sa/4.0/

The classic numerical perspective on ATx = b

Numerical solvers and matrix decompositions

> To solve a single problem once, we might call (for nonsingular and rectangular A, respectively)

x = np.linalg.solve(A.T,b) or x = np.linalg.lstsq(A.T,b)

> To solve many problems with the same A but different b, we can save time by first computing a
matrix decomposition of AT, e.g.

import numpy as np

def solver(A): # for A in M x N
Q,D,Ut = np.linalg.svd(A.T, full_matrices=False)
return lambda b: Ut.T @ (Q.T@ b / D)

slv = solver(A) # pre-compute at O(MNA2)
x1 = slv(bl); x2 = slv(b2); x3 = slv(b3) # this is now cheap

> What is the relationship of these methods to probabilistic inference? There are many different
decompositions (LU, Cholesky, QR, SVD, etc.) applying to special cases (square A, symmetric
positive definite, etc.).

s and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08/04/2024

https://creativecommons.org/licenses/by-sa/4.0/

Setup

to simplify exposition

ATx=b, AecR"™N xecRM peR"

In the following, | will assume

> full-rank A (i.e. the N columns of A are linearly independent). This is just for convenience.
Redundant columns in A can be detected by solvers at runtime, but this makes the code messier.
> N < M - this underspecified case has close connections to numerical methods. If N > M, the
inference aspect is more obvious, and covered above. The standard least-squares solution
(A — 0) can be recovered (assuming full-rank A) by applying the following results to

(AAT)x = Ab

s and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 0€

https://creativecommons.org/licenses/by-sa/4.0/

Sequential updates

a close look at Gaussian conditioning, cleaning up notation

Consider a sequence of trustworthy observations a’x = b; € R, from prior x ~ N (10, X0).
> After the first observation alx = by, posterior mean and covariance are

_ b _aT
p1 = po + Soar (8] Xoar) ! (by — a] o) =Hot UllTlluo
1
) = o — Yoar(alSoar) " 'aT S, =2 — U1TUI
11

using uy := pay, L11 := a]Xpay = aju;.
> After the second observation aJx = by, we have (using Uy := Xy_q 8k, L := a] Xk_18, = a] U.)

T -1 T by —ajm
Mo = (1 + 2182(822182) (bQ — 82/t1) = 1+ U2L7
22
1
Yo =31 — 2182(852182)_18521 =% — Ugiug

L22

s and Linear Algebra — © Philipp Hennig, C 08/04/2(

https://creativecommons.org/licenses/by-sa/4.0/

Sequential updates

a close look at Gaussian conditioning, cleaning up notation

Consider a sequence of trustworthy observations a’x = b; € R, from prior x ~ N (10, X0).
> After the first observation alx = by, posterior mean and covariance are

T -1 T b1 — aj po
H1 = o + 2081(812081) (bl — aluo) = o + U1L7
11
1
Y1 = Y0 — Xpad1 (812081)_18-{20 = — ulL—uI
11

using uy := Xoa1, L11 1= a] Xoa; = ajur.
> After the i-th observation alx = b, we have (using u; := ¥;_1a;, Lj == a] ¥j_1a; = a] uy.)

T -1 T b —al iy
wi = pi—1 + Ei18i(@ Eiz1a) " (b — & piz1) = pio1 F U
I
_ 1
Y=Y — S a(aSi1a) TS =i - U’FU;
I

It looks like we may get away without calling a linear solver. There must be a catch. What are the
objects we need to store, and how expensive are the computations?

and Linear Algebra — © Philipp Hennig, 08

https://creativecommons.org/licenses/by-sa/4.0/

Solving one system, or all of them?

Precomputing solver structures

YXi=Xi_1— U,'U,T = — Z UjUjT
J<i
b o a,T/I,‘,] -
Wi = Hi—1 + U; /Li = o + Z u)“()/
N J<i
=:9;
. . be o aT [47 -
with §; := % =b—a'uy— Z Lyjé;
ii i<l
Observations:

> The sequence of u;, L; has compute cost O(M(1/2i(i — 1)) = O(Mi?) (recall a; € RY).

> We can actually construct u; and Lj (thus, X;) without touching b. Once the sequence has run, we
aeSan compute the posterjor mean for any b in O(Mi).
s and Linear Algebra — © Phf 3Y-SA 4.0 — 08/04/2024

pp Hennig, CC

https://creativecommons.org/licenses/by-sa/4.0/

EBERHARD KARLS

Building a solver ORI

Note: naive implementation. In practice, we don't have to store X and w explicitly; (U, L, &) is enough.

£_0 = diagm(@ => ones(M)) # prior covariance

construct solver structure in O(MxNA2)

L = LowerTriangular(zeros(N, N)) # storage
U = zeros(M, N) # storage
¥y =30
for i in 1:N
y = A[:,1] # O(N)
u =T xy # 0(MA2) <-- !
u /= (u" *y) # 0(M)
Ul:y i] =wu # 0(M)
L[i, 1:1] = y' % U[:, 1:i] # 0(Mi)
b = (u=xu") # O(MA2) <-- !

end # whole loop is O(MA2N)

solve A'x = b in O(MxN)

u_0 = zeros(M) # prior mean

5 = zeros(N) # storage for updates

[= p-0

for i in 1:N
8[i] = (S[:y, i]" * b - A[:, i]" % p_0 - L[i, 2:i-1]" % &8[1:i-1]) / L[i,i] # Oo(m)
poo+= U[:, 1] % 8[1] # O(M)

end # whole loop is O(MN)

Gaussians and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08/04/2024 13

https://creativecommons.org/licenses/by-sa/4.0/

Inference is any-time, if you track uncertainty

The value of the posterior

» Given A € RY*N we can run one pre-processing step in O(M2N) to compute U € RM*M and the
lower triangular L € RV*NAfterward, we can perform inference on any x € R from
ATx = b € RNin O(MN) by building § € RV.

> This is analogous to the notion of a matrix decomposition. (In fact, more below ...)

> There is no problem with stopping the process at any i < N

> The posterior captures the resulting “uncertainty” about x. (We have ignored how to choose
110, Xo SO far, let's assume they are “reasonable”)

s and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08/04/2024 14

https://creativecommons.org/licenses/by-sa/4.0/

Gaussians and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08/04/2024

- Demo -

https://creativecommons.org/licenses/by-sa/4.0/

Some special choices

Stability and efficiency

o 1 1
Li=a'Y g =a'yforj<i U=——=Y18 = ———= | Xodi — ZUJL,]

NCIDYIRED ValYi_ia; 7
So far, we have assumed a general prior A/(x; 0, X0). Let's consider the special choice g = /.

U = zoal/\/aTEOal = = ||a1]|. Note that ||uy || = 1.

Us = (a2 — U1 (uTaz)), thus we find uTuy = (uTas — 1 - ujusg)/\/usa; = 0. Now,

3; 1d2
Los = aJus # |az], but [juz|| = 1
Uj o< aj — ZK,UJL,-/-. By induction: uju; = ufa; — 1-ula; = 0 and [ju| = 1.
This is the Gram-Schmidt process. If simply rename Q = U and R = LT, then Q has orthonormal
columns (QTQ = /), R is upper triangular, and

[QR); = [ULT]; = Zu,ka U = Ay

For ¢ = /, our algorithm computes the QR decomposition of A. Reassuring!

spd X, the column of Q are $5* conjugate, rather than orthogonal)

https://creativecommons.org/licenses/by-sa/4.0/

A Generalization

Who says we have to use the columns of A as given?

> On second thought, it seems arbitrary to go through the columns of A in order. Why not choose the
projections s; in a way that makes the updates easier?

> More generally, we can choose to “observe” the sequence sTATx = sTb for any s; € RY. In the
code, we replace a; — As; =: y;, and by — sTb = 3.

1 1
Li=y"S y=viuforj<i U=——%_1)i= —— | Zo)i — Uil
=Y Ay =Y upnor) < i S i—1Yi o 0Yi ; iLjj

> This requires that we store the s; in a matrix S (to compute the), which seems like it may require
extra storage. We also need to construct s; somehow, following a policy.
> On the upside, maybe we can choose the s; such that the process becomes

> more stable to numerical errors (e.g., maybe we can improve the condition number of L), or easier to
store
> more efficient (e.g., maybe we can make the sequence of posterior means converge towards x faster)

and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08/04/2024

https://creativecommons.org/licenses/by-sa/4.0/

Choice |

picking directions that improve L

Let's start again with s; = ey, but then choose the following s; such that L becomes diagonal:

$1 1= ey, y1=As1=a up =Yoy1 L =y{¥oy1 =yi
setRis = aluy and choose:
Sg 1= €y — R1161 Yo =ASa =as —Ri1y1 U2 =%1Ye Loy =yluy =alu; —alup =0

setRy = ajTu,and choose:
i—1

-1
si=e—Y Rig yi=As=a—> Ry U=y L=y
=1 =1

» Under this choice, L is diagonal. So we do not have to store it explicitly anymore (we can store the
diagonal in the diagonal of R). However, now we have to store the upper triangular R.

s and Linear Algebra — © Philipp Hennig, C 08/04/2(

https://creativecommons.org/licenses/by-sa/4.0/

Choice |

picking directions that improve L

S1 =6 setR; =au si=e— Y Rjg

» Under this choice, L is diagonal. So we do not have to store it explicitly anymore (we can store the
diagonal in the diagonal of R). However, now we have to store the upper triangular R.

> Note that S is evidently also triangular, with ones on the diagonal.

» Computing the posterior mean now simplifies to

Hi = fio + Z U;d; 6= |sTb—yTpo— Z Lid; | /Rij=sTb—yTuo
J<i j<i
For 119 = 0, it is now a two-part process, to compute 5 = sTb, and then p; = > i< Uil
> We can also save a bit of space in U and store it as a lower triangular matrix (left as an exercise).
> For ¥ = /, this yields the LU decomposition of A. If A is symmetric positive definite, we can get
rid of half the memory / compute, and get the Cholesky decomposition.

2024

s and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 0€

https://creativecommons.org/licenses/by-sa/4.0/

Choice Il

picking directions that speed up convergence

> Given a particular b, our prior mean i yields an initial residual
fo=b—ATpo

which seems like an informative choice for the first direction s; = rg.
> After the first iteration (y; = Asy = Arg, Uy = Zoy1), we have posterior mean

sTb —yTno

M1 = po + U
yiu

and the new residual is orthogonal to the old one: r; = b — ATy = ro — $15]r0. We can thus

T
choose s, =1y (0r sy =1 — 54 g%ii).
1

> For symmetric semidefinite A, 3¢ = /, this is the Conjugate Gradient method (up to
implementation details). In general, it is a Krylov-Subspace method.

and Linear Algebra — © Philipp Hennig,

https://creativecommons.org/licenses/by-sa/4.0/

Preconditioning

Prior knowledge helps stability and convergence

How should we choose 34?
We saw that ¥y = I makes close connections to classic decompositions. More generally:
The basic algorithm (s; = €;) computes a QR decomposition of A for ¥ = /.
In conjugate gradients, the first update is
STh —yTug b —rlApo
yIUl f(.)rAZ()ATr()

If we manage to pick X = (AAT)~!, we get puy = (AAT)~LAb, the solution to the normal
equations.
Under the same choice, the prior uncertainty becomes scalable. Say A is spd. Then:

XT(AAT) ™ x = |Ib]*

So given a b, we can pre-scale it to have unit norm, and get meaningful uncertainty.

p1 = pio + Uy - = o + XoArg -

»~1/2 is associated with the pre-conditioner in classic methods. We should aim to pick X ~ (AAT)~!

for good uncertainty calibration and fast convergence of iterative solvers.

1d Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08

https://creativecommons.org/licenses/by-sa/4.0/

What | haven' told you

Calibrating uncertainty

So far, nothing guarantees us that the posterior p(x | A, b) = N (i, 2) is calibrated, i.e. that
(e =)T (e —) = 12T =) (e —) T) ~ M

Calibration - picking g, 3o — is a new, separate task for probabilistic solvers.
Some pointers in papers listed at the end.

1d Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08

https://creativecommons.org/licenses/by-sa/4.0/

- From vectors [x;] to functions f(x) -

» Common matrix decompositions amount to specific policies for the collection of observations.
In this sense, matrix decompositions are data loaders.

» Implemented as Gaussian inference, these algorithms become anytime, and quantify uncertainty.
» Projections s; can be actively chosen from a policy to improve stability and convergence.
» The prior covariance ¥, amounts simultaneously to pre-conditioning and uncertainty calibration.

The final piece: all these methods can be implemented lazily, and thus also work on functions.

and Linear Algebra — © Philipp Hennig,

https://creativecommons.org/licenses/by-sa/4.0/

Gaussian Inference — again UTOMINGER

general form proof in Pfortner et al., 2022

Theorem: Let f ~ A/(m, k) be a Gaussian random variable and A a bounded linear operator. Then
ATf ~ N (ATm,ATKA)
Let e € N(v, A) be a RV valued Gaussian random vector independent of f. Then, forany b € RY,

fl(ATf +¢e=b) ~N(m'? k"P) with conditional moments
m'® =m + (ATK)T(ATkKA + AT (b — (ATm +v)) and
KNP =k — (ATK)T(ATKA + A)TATk

Gaus

s and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08/04/2024 24

https://arxiv.org/abs/2212.12474
https://creativecommons.org/licenses/by-sa/4.0/

Gaussian Inference — again

general form proof in Pfértner et al., 2022

Theorem: Let f ~ GP(m, k) be a Gaussian process with index set X on the probability space (92, F, P),
whose paths lie in a real separable reproducing kernel Banach space B R, such that w + f(-,w) is
a B-valued Gaussian random variable. And let A be a bounded linear operator. Then

ATF ~ N(ATm, ATKA)
Lete € N(v, A) be a R" valued Gaussian random vector independent of f. Then, for any b € R,
f|(ATf+e=b) ~ N(m'° k1) with conditional moments
m'le =m + (ATK)T(ATkA + AT (b— (ATm +v)) and
KMo =k — (ATK)T(ATKA + A)TATK
where, for two bounded linear operators A : B— RV, A : B—RY, the N x N matrix ATkA has entries

ATKA]j = Alx — Alk(x, -)]]];

ssians and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08/04/2024 24

https://arxiv.org/abs/2212.12474
https://creativecommons.org/licenses/by-sa/4.0/

Learning Functions

The functional programming perspective on functional analysis

» So far, we considered a concrete vector x € R, for which we assume the prior N'(x; o, $o).

> Given a finite set of linear projections ATx = b, we pick a sequence of projections
yTx = sTATx = sTb to iteratively update the posterior mean and covariance:

1 oi(b
=SS e (Th—TAT) =g u i ane

Yi=% 1 — %A STATE 1 = Y1 — Uiuf

/STATL\ 1ATS
> Recall that [S)],n = COVjaT x=b, (xv, Xw). Consider a covariance function (aka. positive definite

kernel) k(v,w) = cov(xy, x,,) used to build 3y, and a mean function 1,o(v). Then constructing
Y0Asg is a partial evaluation (or currying) of k. The update is a closure of the function k. So long
as we can compute this closure, we can construct a functional solver that lazily pre-computes the
solution operator to predict arbitrary elements of x, from arbitrary observations /.

> In particular, x does not have to be finite, but can be a function itself.

ns and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08/04/2024

https://creativecommons.org/licenses/by-sa/4.0/

Learning Functions

The functional programming perspective on functional analysis

pi(®) = + u(e)d;(b) and
5 1(e,0) = ti()uT (o)

™
—
\..
o
Ny
I

For example, consider As; = §(z — z;), the point evaluation function at z;.
Then uj(e) = k(e,z)/+/Li with Lj = k(z;,z) > 0.

and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08/0:

EBERHAI

https://arxiv.org/abs/2212.12474
https://creativecommons.org/licenses/by-sa/4.0/

Learning Functions

The functional programming perspective on functional analysis

pi(e) = + u(e);(b) and
Yi(e,0) =% i(e,0) —ui(e)uf (o)

> For example, consider As; = 6(z — z;), the point evaluation function at z;.
Then uj(e) = k(e,z)/+/Li with Lj = k(z;,z) > 0.

> Consider a function f(z) and sTAf = V2f(z;) = 22| 4 Zf@| 4 2G| Thep
i 077 7=7, 075 7=z, 073 7=z,
3
Ok(e,2) 020%k(z;,z;)
=L ’ :R* =R with ;= =R
ui(e) = 075 |,_, . ZZ 0730z |,_, :

and we can encode that Poisson’s equation V2f = g holds at point z;, for arbitrary forces g(z),
without discretizing the solution f, and predict the solution at any point z.
> More in Pfortner et al. (2022), and the next talks.

s and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08/04/2024

https://arxiv.org/abs/2212.12474
https://creativecommons.org/licenses/by-sa/4.0/

Want to know more?

Some reading

» Philipp Hennig
Probabilistic Interpretation of Linear Solvers
SIAM JOpt, 25(1), 2015

» Jon Cockayne, Chris J. Oates, llse C.F. Ipsen, Mark Girolami
A Bayesian Conjugate Gradient Method (with discussion)
Bayesian Analysis, 14(3): 937-1012

» Jonathan Wenger, Philipp Hennig
Probabilistic Linear Solvers for Machine Learning
Adv. in NeurlIPS 33 (2020)

» Jonathan Wenger, Geoff Pleiss, Marvin Pfortner, Philipp Hennig, John P. Cunningham
Posterior and Computational Uncertainty in Gaussian Processes
Adv. in NeurlIPS 35 (2022)

» Chapter Ill in Philipp Hennig, Michael A. Osborne, Hans Kersting
Probabilistic Numerics = Computation as Machine Learning
Cambridge University Press, 2022

ssians and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08/04/2024

https://epubs.siam.org/doi/abs/10.1137/140955501
https://projecteuclid.org/journals/bayesian-analysis/volume-14/issue-3/A-Bayesian-Conjugate-Gradient-Method-with-Discussion/10.1214/19-BA1145.full
https://proceedings.neurips.cc/paper/2020/hash/4afd521d77158e02aed37e2274b90c9c-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/4683beb6bab325650db13afd05d1a14a-Abstract-Conference.html
https://www.probabilistic-numerics.org/textbooks/
https://creativecommons.org/licenses/by-sa/4.0/

Summary: Linear Algebra and Gaussian Inference

» All linear problems (over- & under-specified, well-posed) are
special cases of Gaussian inference.

» |Inference itself realizes the solution operator — common matrix AR R A
decompositions amount to specific policies for the collection of E i E
observations. In this sense, matrix decompositions are data H
loaders.

» When implemented as Gaussian inference, these algorithms
become anytime, and quantify an uncertainty. Calibrating this
uncertainty is about picking the right prior. It also speeds up
convergence.

> All these methods can be implemented lazily, and thus also work E
on functions. This allows building meshless solvers for PDEs, and
other numerical functional analysis tasks, with uncertainty
quantification.

Download these slides:

s and Linear Algebra — © Philipp Hennig, CC BY-SA 4.0 — 08/04/2024

https://creativecommons.org/licenses/by-sa/4.0/

