The Gaussian perspective on Linear Algebra

COMPUTATION AS DATA PROCESSING

Philipp Hennig

Probnum Spring School 2024, Southampton

8 April 2024

EBERHARD KARLS
 UNIVERSITAT TUBINGEN

 10
 Tübingen AI Center tuebingen.ai

- It seems like there is a whole zoo of linear algebra problems. Can we put them all in one joint description?

Problem Setting

Want to find $x \in \mathbb{R}^{M}$ in

$$
A^{\top} x=b,
$$

with $A \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^{N}$. For simple exposition, I will assume A has full rank (but can be rectangular).
What your teacher told you:
Underspecified If $M>N$ and $\operatorname{rk}(A)=N$, then there are are many possible solutions x_{*}. We then regularize to find

$$
x_{*}=\underset{x \in \mathbb{R}^{M}}{\arg \min }\left\|A^{\top} x-b\right\|^{2}+\|x-\mu\|_{\Sigma^{-1}}^{2} \quad \text { with }\|v\|_{\Sigma^{-1}}^{2}:=v^{\top} \Sigma^{-1} V ; \mu \in \mathbb{R}^{M}, \Sigma \succ 0 \in \mathbb{R}^{M \times M}
$$

Nonsingular If $M=N$ and $\operatorname{rk}(A)=N$, then there is a unique solution $x_{*}=A^{-\top} b$
Overspecified If $M<N$ and $\operatorname{rk}(A)=M$, then there are no solutions. We find the least-squares solution

$$
x_{*}=\underset{x \in \mathbb{R}^{M}}{\arg \min }\left\|A^{\top} x-b\right\|^{2}
$$

Under- over- and well-specified problems can all be subsumed as special cases of the regularized least-squares problem

$$
x_{*}=\underset{x \in \mathbb{R}^{M}}{\arg \min }\left\|A^{\top} x-b\right\|_{\Lambda^{-1}}^{2}+\|x-\mu\|_{\Sigma^{-1}}^{2} \quad \text { with } \Sigma^{-1}, \Lambda^{-1} \succ 0
$$

solved by

$$
x_{*}=\left(A \Lambda^{-1} A^{\top}+\Sigma^{-1}\right)^{-1}\left(A \Lambda^{-1} b+\Sigma^{-1} \mu\right)=\mu+\Sigma A\left(A^{\top} \Sigma A+\Lambda\right)^{-1}\left(b-A^{\top} \mu\right)
$$

Underspecified: special case of $\Lambda^{-1}=I$.
Nonsingular: special case of $\Sigma^{-1}=0$.
Over-specified: special case of $\Sigma^{-1}=0, \Lambda^{-1}=1$.

- $A^{\top} x=b$, whether under-, over-, or well-posed, can be solved as a regularized problem

$$
x_{*}=\underset{x \in \mathbb{R}^{M}}{\arg \min }\left\|A^{\top} x-b\right\|_{\Lambda^{-1}}^{2}+\|x-\mu\|_{\Sigma^{-1}}^{2} \quad=\left(A \Lambda^{-1} A^{\top}+\Sigma^{-1}\right)^{-1}\left(A \Lambda^{-1} b+\Sigma^{-1} \mu\right)
$$

- Regularization and Pseudoinverses provide canonical solutions to the over- and underdetermined cases, respectively. But they leave questions on the table:
∇ What is the right choice of μ, Σ ? What is the interpretation of the regularized estimate?
- What about the residuals $b-A^{\top} X_{*}$ of the least-squares solution? Shouldn't they, and thus Λ be part of the interpretation of the solution?
- In both cases, uncertainty provides an answer:
- We need to regularize because the b does not provide enough information to pin down a unique x. We are uncertain about the "true" x.
- If we actually believe a true x exists, then $A^{\top} x=b$ can not be perfectly true. We are uncertain about the "true" b, or the validity of the equation $A^{\top} x=b$.
- There are many possible ways to assign semantic meaning ("causes") to this uncertainty. But one universal way to formalize it...

The Probabilistic Interpretation

- The regularizer becomes a prior encoding explicit uncertainty about the true x :

$$
\begin{aligned}
p(x \mid \mu, \Sigma) & =\frac{1}{(2 \pi)^{m / 2}|\Sigma|} \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right) \\
& =\mathcal{N}(x ; \mu, \Sigma)
\end{aligned}
$$

- The least-squares problem becomes a likelihood encoding that we are uncertain about its validity:

$$
\begin{aligned}
p(b \mid x, A, \Lambda) & =\frac{1}{(2 \pi)^{n / 2}|\Lambda|} \exp \left(-\frac{1}{2}\left(A^{\top} x-b\right)^{\top} \Lambda^{-1}\left(A^{\top} x-b\right)\right) \\
& =\mathcal{N}\left(b ; A^{\top} x, \Lambda\right)
\end{aligned}
$$

- The regularized least-squares solution becomes the mode / mean of the posterior. Model mismatch is captured in the evidence:

$$
\begin{aligned}
p(x \mid b, A, \Lambda, \mu, \Sigma) & =\frac{p(b \mid x, A, \Lambda) p(x \mid \mu, \Sigma)}{p(b \mid A, \Lambda, \mu, \Sigma)}=\frac{\mathcal{N}\left(b ; A^{\top} x, \Lambda\right) \mathcal{N}(x ; \mu, \Sigma)}{\mathcal{N}\left(b ; A^{\top} \mu, \Lambda+A^{\top} \Sigma A\right)} \\
& =\mathcal{N}\left(x ; x_{*},\left(A \Lambda^{-1} A^{\top}+\Sigma^{-1}\right)^{-1}\right)
\end{aligned}
$$

Gaussian Inference

Theorem: Let $f \sim \mathcal{N}(m, k)$ be a Gaussian random variable and A a bounded linear operator. Then

$$
A^{\top} f \sim \mathcal{N}\left(A^{\top} m, A^{\top} k A\right)
$$

Let $\varepsilon \in \mathcal{N}(\nu, \Lambda)$ be a \mathbb{R}^{N} valued Gaussian random vector independent of f. Then, for any $b \in \mathbb{R}^{N}$,

$$
\begin{aligned}
f \mid\left(A^{\top} f+\varepsilon=b\right) & \sim \mathcal{N}\left(m^{f \mid b}, k^{f \mid b}\right) \quad \text { with conditional moments } \\
m^{f \mid b} & =m+\left(A^{\top} k\right)^{\top}\left(A^{\top} k A+\Lambda\right)^{\dagger}\left(b-\left(A^{\top} m+\nu\right)\right) \quad \text { and } \\
k^{f \mid b} & =k-\left(A^{\top} k\right)^{\top}\left(A^{\top} k A+\Lambda\right)^{\dagger} A^{\top} k
\end{aligned}
$$

Step 2

- Algorithms -

So far:

- All linear problems of the form $A^{\top} x=b$ can be phrased as Gaussian inference problems.
- All assumptions are spelled out in the generative model (prior and likelihood).
- Uncertainty from under-specification can be captured in the posterior.
- The errors necessary to explain residuals (especially in over-specified problems) can be captured in the likelihood.

However, to solve Gaussian inference problems computationally (and thus all linear problems!), we still need to solve (albeit well-posed, symmetric positive definite) linear systems. Does the probabilistic formulation also tell us how to do these computations?

The classic numerical perspective on $A^{\top} x=b$

- To solve a single problem once, we might call (for nonsingular and rectangular A, respectively)

$$
x=n p . l i n a l g . s o l v e(A . T, b) \text { or } x=n p . l i n a l g . l s t s q(A . T, b)
$$

- To solve many problems with the same A but different b, we can save time by first computing a matrix decomposition of A^{\top}, e.g.

```
import numpy as np
def solver(A): # for A in M x N
    Q,D,Ut = np.linalg.svd(A.T, full_matrices=False)
    return lambda b: Ut.T @ (Q.T @ b / D)
slv = solver(A) # pre-compute at O(MN^2)
x1 = slv(b1); x2 = slv(b2); x3 = slv(b3) # this is now cheap
```

- What is the relationship of these methods to probabilistic inference? There are many different decompositions (LU, Cholesky, QR, SVD, etc.) applying to special cases (square A, symmetric positive definite, etc.).

$$
A^{\top} x=b, \quad A \in \mathbb{R}^{M \times N}, x \in \mathbb{R}^{M}, b \in \mathbb{R}^{N}
$$

In the following, I will assume

- full-rank A (i.e. the N columns of A are linearly independent). This is just for convenience. Redundant columns in A can be detected by solvers at runtime, but this makes the code messier.
- $N \leq M$ - this underspecified case has close connections to numerical methods. If $N>M$, the inference aspect is more obvious, and covered above. The standard least-squares solution ($\Lambda \rightarrow 0$) can be recovered (assuming full-rank A) by applying the following results to

$$
\left(A A^{\top}\right) x=A b
$$

Consider a sequence of trustworthy observations $a_{i}^{\top} x=b_{i} \in \mathbb{R}$, from prior $x \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right)$.

- After the first observation $a_{1}^{\top} x=b_{1}$, posterior mean and covariance are

$$
\begin{array}{ll}
\mu_{1}=\mu_{0}+\Sigma_{0} a_{1}\left(a_{1}^{\top} \Sigma_{0} a_{1}\right)^{-1}\left(b_{1}-a_{1}^{\top} \mu_{0}\right) & =\mu_{0}+u_{1} \frac{b_{1}-a_{1}^{\top} \mu_{0}}{L_{11}} \\
\Sigma_{1}=\Sigma_{0}-\Sigma_{0} a_{1}\left(a_{1}^{\top} \Sigma_{0} a_{1}\right)^{-1} a_{1}^{\top} \Sigma_{0} & =\Sigma_{0}-u_{1} \frac{1}{L_{11}} u_{1}^{\top}
\end{array}
$$

using $u_{1}:=\Sigma_{0} a_{1}, L_{11}:=a_{1}^{\top} \Sigma_{0} a_{1}=a_{1}^{\top} u_{1}$.

- After the second observation $a_{2}^{\top} x=b_{2}$, we have (using $u_{k}:=\Sigma_{k-1} a_{k}, L_{k k}:=a_{k}^{\top} \Sigma_{k-1} a_{k}=a_{k}^{\top} u_{k}$.)

$$
\begin{array}{ll}
\mu_{2}=\mu_{1}+\Sigma_{1} a_{2}\left(a_{2}^{\top} \Sigma_{1} a_{2}\right)^{-1}\left(b_{2}-a_{2}^{\top} \mu_{1}\right) & =\mu_{1}+u_{2} \frac{b_{2}-a_{2}^{\top} \mu_{1}}{L_{22}} \\
\Sigma_{2}=\Sigma_{1}-\Sigma_{1} a_{2}\left(a_{2}^{\top} \Sigma_{1} a_{2}\right)^{-1} a_{2}^{\top} \Sigma_{1} & =\Sigma_{1}-u_{2} \frac{1}{L_{22}} u_{2}^{\top}
\end{array}
$$

Consider a sequence of trustworthy observations $a_{i}^{\top} x=b_{i} \in \mathbb{R}$, from prior $x \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right)$.

- After the first observation $a_{1}^{\top} x=b_{1}$, posterior mean and covariance are

$$
\begin{array}{ll}
\mu_{1}=\mu_{0}+\Sigma_{0} a_{1}\left(a_{1}^{\top} \Sigma_{0} a_{1}\right)^{-1}\left(b_{1}-a_{1}^{\top} \mu_{0}\right) & =\mu_{0}+u_{1} \frac{b_{1}-a_{1}^{\top}}{L_{11}} \\
\Sigma_{1}=\Sigma_{0}-\Sigma_{0} a_{1}\left(a_{1}^{\top} \Sigma_{0} a_{1}\right)^{-1} a_{1}^{\top} \Sigma_{0} & =\Sigma_{0}-u_{1} \frac{1}{L_{11}} u_{1}^{\top}
\end{array}
$$

using $u_{1}:=\Sigma_{0} a_{1}, L_{11}:=a_{1}^{\top} \Sigma_{0} a_{1}=a_{1}^{\top} u_{1}$.

- After the i-th observation $a_{i}^{\top} x=b_{i}$, we have (using $u_{i}:=\Sigma_{i-1} a_{i}, L_{i i}:=a_{i}^{\top} \Sigma_{i-1} a_{i}=a_{k}^{\top} u_{k}$.)

$$
\begin{array}{ll}
\mu_{i}=\mu_{i-1}+\Sigma_{i-1} a_{i}\left(a_{i}^{\top} \Sigma_{i-1} a_{i}\right)^{-1}\left(b_{i}-a_{i}^{\top} \mu_{i-1}\right) & =\mu_{i-1}+u_{i} \frac{b_{i}-a_{i}^{\top} \mu_{i-1}}{L_{i i}} \\
\Sigma_{i}=\Sigma_{i-1}-\Sigma_{i-1} a_{i}\left(a_{i}^{\top} \Sigma_{i-1} a_{i}\right)^{-1} a_{i}^{\top} \Sigma_{i-1} & =\Sigma_{i-1}-u_{i} \frac{1}{L_{i i}} u_{k}^{\top}
\end{array}
$$

It looks like we may get away without calling a linear solver. There must be a catch. What are the objects we need to store, and how expensive are the computations?

EBERHARD KARLS

$$
\begin{aligned}
L_{i j}=a_{i}^{\top} \Sigma_{j-1} a_{j}=a_{i}^{\top} u_{j} \text { for } j \leq i \quad u_{i} & =\frac{1}{\sqrt{a_{i}^{\top} \Sigma_{i-1} a_{i}}} \Sigma_{i-1} a_{i}=\frac{1}{\sqrt{a_{i}^{\top} \Sigma_{i-1} a_{i}}}\left(\Sigma_{0} a_{i}-\sum_{j<i} u_{j} L_{j j}\right) \\
& =\Sigma_{0}-\sum_{j \leq i} u_{j} u_{j}^{\top} \\
\Sigma_{i}=\Sigma_{i-1}-u_{i} u_{i}^{\top} & \underbrace{L_{i i}}_{=: \delta_{i}}
\end{aligned}
$$

$$
\text { with } \delta_{i}:=\frac{b_{i}-a_{i}^{\top} \mu_{i-1}}{L_{i i}}
$$

$$
=b_{i}-a_{i}^{\top} \mu_{0}-\sum_{j<i} L_{i j} \delta_{j}
$$

Observations:

- The sequence of $u_{i}, L_{i j}$ has compute $\operatorname{cost} \mathcal{O}\left(M(1 / 2 i(i-1))=\mathcal{O}\left(M i^{2}\right)\left(\right.\right.$ recall $\left.a_{i} \in \mathbb{R}^{M}\right)$.
\rightarrow We can actually construct u_{i} and $L_{i j}$ (thus, Σ_{i}) without touching b. Once the sequence has run, we

Building a solver

```
\Sigma_0 = diagm(0 => ones(M)) # prior covariance
## construct solver structure in O(M*N^2)
L = LowerTriangular(zeros(N,N)) # storage
U = zeros(M,N) # storage
\Sigma = \Sigma_0
for i in 1:N
    y =A[:,i] #O(N)
    u = \Sigma*y # O(M^2) <-- !
    u /= V(u' * y) # O(M)
    U[:, i] =u # O(M)
    L[i, 1:i] = y' * U[:, 1:i] # O(Mi)
    \Sigma -= (u* u') # O(M^2) <-- !
end # whole loop is O(M^2N)
## solve A'x = b in O(M*N)
\mu_0 = zeros(M) # prior mean
\delta = zeros(N) # storage for updates
\mu = \mu_0
for i in 1:N
    \delta[i] = (S[:, i]' * b - A[:, i]' * \mu_0 - L[i, 1:i-1]' * \delta[1:i-1]) / L[i,i] # O(M)
    \mu +=U[:, i] * \delta[i] # O(M)
end # whole loop is O(MN)
```

- Given $A \in \mathbb{R}^{M \times N}$, we can run one pre-processing step in $O\left(M^{2} N\right)$ to compute $U \in \mathbb{R}^{M \times M}$ and the lower triangular $L \in \mathbb{R}^{N \times N}$. Afterward, we can perform inference on any $x \in \mathbb{R}^{M}$ from $A^{\top} x=b \in \mathbb{R}^{N}$ in $O(M N)$ by building $\delta \in \mathbb{R}^{N}$.
- This is analogous to the notion of a matrix decomposition. (In fact, more below ...)
- There is no problem with stopping the process at any $i<N$
- The posterior captures the resulting "uncertainty" about x. (We have ignored how to choose μ_{0}, Σ_{0} so far, let's assume they are "reasonable")
- Demo -

Some special choices

$$
L_{i j}=a_{i}^{\top} \Sigma_{j-1} a_{j}=a_{i}^{\top} u_{j} \text { for } j \leq i \quad u_{i}=\frac{1}{\sqrt{a_{i}^{\top} \Sigma_{i-1} a_{i}}} \Sigma_{i-1} a_{i}=\frac{1}{\sqrt{a_{i}^{\top} \Sigma_{i-1} a_{i}}}\left(\Sigma_{0} a_{i}-\sum_{j<i} u_{j} L_{i j}\right)
$$

So far, we have assumed a general prior $\mathcal{N}\left(x ; \mu_{0}, \Sigma_{0}\right)$. Let's consider the special choice $\Sigma_{0}=I_{\mathrm{M}}$.

- $u_{1}=\Sigma_{0} a_{1} / \sqrt{a_{1}^{\top} \Sigma_{0} a_{1}}=a_{1} /\left\|a_{1}\right\|, L_{11}=a_{1}^{\top} u_{1}=\left\|a_{1}\right\|$. Note that $\left\|u_{1}\right\|=1$.
$\Rightarrow u_{2}=\frac{1}{\sqrt{a_{2}^{\top} \Sigma_{1} a_{2}}}\left(a_{2}-u_{1}\left(u_{1}^{\top} a_{2}\right)\right)$, thus we find $u_{1}^{\top} u_{2}=\left(u_{1}^{\top} a_{2}-1 \cdot u_{1}^{\top} u_{2}\right) / \sqrt{u_{2}^{\top} a_{1}}=0$. Now,

$$
L_{22}=a_{2}^{\top} u_{2} \neq\left\|a_{2}\right\|, \text { but }\left\|u_{2}\right\|=1
$$

- $u_{i} \propto a_{i}-\sum_{j<i} u_{j} L_{i j}$. By induction: $u_{k}^{\top} u_{i}=u_{k}^{\top} a_{i}-1 \cdot u_{k}^{\top} a_{i}=0$ and $\left\|u_{k}\right\|=1$.

This is the Gram-Schmidt process. If simply rename $Q=U$ and $R=L^{\top}$, then Q has orthonormal columns $\left(Q^{\top} Q=I\right), R$ is upper triangular, and

$$
[Q R]_{j j}=\left[U L^{\top}\right]_{i j}=\sum_{k} u_{i k} a_{j}^{\top} u_{k}=A_{i j}
$$

For $\Sigma_{0}=I$, our algorithm computes the QR decomposition of A. Reassuring!
(For general spd Σ_{0}, the columns of Q are Σ_{0}^{-1} conjugate, rather than orthogonal)

A Generalization

- On second thought, it seems arbitrary to go through the columns of A in order. Why not choose the projections s_{i} in a way that makes the updates easier?
- More generally, we can choose to "observe" the sequence $s_{i}^{\top} A^{\top} x=s_{i}^{\top} b$ for any $s_{i} \in \mathbb{R}^{N}$. In the code, we replace $a_{i} \rightarrow A s_{i}=: y_{i}$, and $b_{i} \rightarrow s_{i}^{\top} b=\beta_{i}$.

$$
L_{i j}=y_{i}^{\top} \Sigma_{j-1} y_{j}=y_{i}^{\top} u_{j} \text { for } j \leq i \quad u_{i}=\frac{1}{\sqrt{y_{i} \Sigma_{i-1} y_{i}}} \Sigma_{i-1} y_{i}=\frac{1}{\sqrt{y_{i} \Sigma_{i-1} y_{i}}}\left(\Sigma_{0} y_{i}-\sum_{j<i} u_{j} L_{i j}\right)
$$

- This requires that we store the s_{i} in a matrix S (to compute the β_{i}), which seems like it may require extra storage. We also need to construct s; somehow, following a policy.
- On the upside, maybe we can choose the s_{i} such that the process becomes
- more stable to numerical errors (e.g., maybe we can improve the condition number of L), or easier to store
- more efficient (e.g., maybe we can make the sequence of posterior means converge towards x faster)

Choice I

Let's start again with $s_{1}=e_{1}$, but then choose the following s_{i} such that L becomes diagonal:

$$
\begin{aligned}
s_{1}:=e_{1}, & y_{1}=A s_{1}=a_{1} & u_{1}=\Sigma_{0} y_{1} & L_{11}=y_{1}^{\top} \Sigma_{0} y_{1}=y_{1}^{\top} u_{1} \\
\text { set } R_{12}=a_{2}^{\top} u_{1} & \text { and choose: } & & \\
s_{2}:=e_{2}-R_{11} e_{1} & y_{2}=A s_{2}=a_{2}-R_{11} y_{1} & u_{2}=\Sigma_{1} y_{2} & L_{21}=y_{2}^{\top} u_{1}=a_{2}^{\top} u_{1}-a_{2}^{\top} u_{1}=0
\end{aligned}
$$

set $R_{i j}=a_{j}^{\top} u_{j}$ and choose:

$$
s_{i}:=e_{i}-\sum_{j=1}^{i-1} R_{i j} e_{j} \quad y_{i}=A s_{i}=a_{i}-\sum_{j=1}^{i-1} R_{i j} y_{j} \quad u_{i}=\Sigma_{i-1} y_{i} \quad L_{i i}=y_{i}^{\top} u_{i}
$$

- Under this choice, L is diagonal. So we do not have to store it explicitly anymore (we can store the diagonal in the diagonal of R). However, now we have to store the upper triangular R.

$$
s_{1}:=e_{1} \quad \text { set } R_{i j}=a_{j}^{\top} u_{i} \quad s_{i}:=e_{i}-\sum_{j=1}^{i-1} R_{i j} e_{j}
$$

- Under this choice, L is diagonal. So we do not have to store it explicitly anymore (we can store the diagonal in the diagonal of R). However, now we have to store the upper triangular R.
- Note that S is evidently also triangular, with ones on the diagonal.
- Computing the posterior mean now simplifies to

$$
\mu_{i}=\mu_{0}+\sum_{j \leq i} u_{j} \delta_{j} \quad \delta_{i}=\left(s_{i}^{\top} b-y_{i}^{\top} \mu_{0}-\sum_{j<i} L_{i j} \delta_{j}\right) / R_{i, i}=s_{i}^{\top} b-y_{i}^{\top} \mu_{0}
$$

For $\mu_{0}=0$, it is now a two-part process, to compute $\beta_{i}=s_{i}^{\top} b$, and then $\mu_{i}=\sum_{j \leq i} u_{j} \beta_{j}$.

- We can also save a bit of space in U and store it as a lower triangular matrix (left as an exercise).
- For $\Sigma_{0}=1$, this yields the LU decomposition of A. If A is symmetric positive definite, we can get rid of half the memory / compute, and get the Cholesky decomposition.
- Given a particular b, our prior mean μ_{0} yields an initial residual

$$
r_{0}=b-A^{\top} \mu_{0}
$$

which seems like an informative choice for the first direction $s_{1}=r_{0}$.

- After the first iteration ($\left.y_{1}=A s_{1}=A r_{0}, u_{1}=\Sigma_{0} y_{1}\right)$, we have posterior mean

$$
\mu_{1}=\mu_{0}+u_{1} \frac{s_{1}^{\top} b-y_{1}^{\top} \mu_{0}}{y_{1}^{\top} u_{1}}
$$

and the new residual is orthogonal to the old one: $r_{1}=b-A^{\top} \mu_{1}=r_{0}-s_{1} s_{1}^{\top} r_{0}$. We can thus choose $s_{2}=r_{1}$ (or $s_{2}=r_{1}-s_{1} \frac{r_{1}^{\top} s_{1}}{s_{1}^{\top} s_{1}}$).

- For symmetric semidefinite $A, \Sigma_{0}=1$, this is the Conjugate Gradient method (up to implementation details). In general, it is a Krylov-Subspace method.

Preconditioning

How should we choose Σ_{0} ?

- We saw that $\Sigma_{0}=/$ makes close connections to classic decompositions. More generally:
- The basic algorithm ($s_{i}=e_{i}$) computes a QR decomposition of A for $\Sigma_{0}=1$.
- In conjugate gradients, the first update is

$$
\mu_{1}=\mu_{0}+u_{1} \cdot \frac{s_{1}^{\top} b-y_{1}^{\top} \mu_{0}}{y_{1}^{\top} u_{1}}=\mu_{0}+\Sigma_{0} A r_{0} \cdot \frac{r_{0}^{\top} b-r_{0}^{\top} A \mu_{0}}{r_{0}^{\top} A \Sigma_{0} A \top r_{0}}
$$

If we manage to pick $\Sigma_{0}=\left(A A^{\top}\right)^{-1}$, we get $\mu_{1}=\left(A A^{\top}\right)^{-1} A b$, the solution to the normal equations.

- Under the same choice, the prior uncertainty becomes scalable. Say A is spd. Then:

$$
x^{\top}\left(A A^{\top}\right)^{-1} x=\|b\|^{2}
$$

So given $a b$, we can pre-scale it to have unit norm, and get meaningful uncertainty.
$\Sigma^{-1 / 2}$ is associated with the pre-conditioner in classic methods. We should aim to pick $\Sigma \approx\left(A A^{\top}\right)^{-1}$ for good uncertainty calibration and fast convergence of iterative solvers.

- So far, nothing guarantees us that the posterior $p(x \mid A, b)=\mathcal{N}(\mu, \Sigma)$ is calibrated, i.e. that

$$
\left(x_{*}-\mu\right)^{\top} \Sigma^{\dagger}\left(x_{*}-\mu\right)=\operatorname{tr}\left(\Sigma^{\dagger}\left(x_{*}-\mu\right)\left(x_{*}-\mu\right)^{\top}\right) \sim M
$$

- Calibration - picking μ_{0}, Σ_{0} - is a new, separate task for probabilistic solvers.
- Some pointers in papers listed at the end.

```
Step 3
- From vectors \(\left[x_{i}\right]\) to functions \(f(x)\) -
```

- Common matrix decompositions amount to specific policies for the collection of observations. In this sense, matrix decompositions are data loaders.
- Implemented as Gaussian inference, these algorithms become anytime, and quantify uncertainty.
- Projections s_{i} can be actively chosen from a policy to improve stability and convergence.
- The prior covariance Σ_{0} amounts simultaneously to pre-conditioning and uncertainty calibration.

The final piece: all these methods can be implemented lazily, and thus also work on functions.

Gaussian Inference - again

Theorem: Let $f \sim \mathcal{N}(m, k)$ be a Gaussian random variable and A a bounded linear operator. Then

$$
A^{\top} f \sim \mathcal{N}\left(A^{\top} m, A^{\top} k A\right)
$$

Let $\varepsilon \in \mathcal{N}(\nu, \Lambda)$ be a \mathbb{R}^{N} valued Gaussian random vector independent of f. Then, for any $b \in \mathbb{R}^{N}$,

$$
\begin{aligned}
f \mid\left(A^{\top} f+\varepsilon=b\right) & \sim \mathcal{N}\left(m^{f \mid b}, k^{f \mid b}\right) \quad \text { with conditional moments } \\
m^{f \mid b} & =m+\left(A^{\top} k\right)^{\top}\left(A^{\top} k A+\Lambda\right)^{\dagger}\left(b-\left(A^{\top} m+\nu\right)\right) \quad \text { and } \\
k^{f \mid b} & =k-\left(A^{\top} k\right)^{\top}\left(A^{\top} k A+\Lambda\right)^{\dagger} A^{\top} k
\end{aligned}
$$

Gaussian Inference - again

Theorem: Let $f \sim \mathcal{G} \mathcal{P}(m, k)$ be a Gaussian process with index set \mathbb{X} on the probability space (Ω, \mathcal{F}, P), whose paths lie in a real separable reproducing kernel Banach space $\mathbb{B} \subset \mathbb{R}^{2}$, such that $\omega \mapsto f(\cdot, \omega)$ is a \mathbb{B}-valued Gaussian random variable. And let A be a bounded linear operator. Then

$$
A^{\top} f \sim \mathcal{N}\left(A^{\top} m, A^{\top} k A\right)
$$

Let $\varepsilon \in \mathcal{N}(\nu, \Lambda)$ be a \mathbb{R}^{N} valued Gaussian random vector independent of f. Then, for any $b \in \mathbb{R}^{N}$,

$$
\begin{aligned}
f \mid\left(A^{\top} f+\varepsilon=b\right) & \sim \mathcal{N}\left(m^{f \mid b}, k^{f \mid b}\right) \quad \text { with conditional moments } \\
m^{f \mid b} & =m+\left(A^{\top} k\right)^{\top}\left(A^{\top} k A+\Lambda\right)^{\dagger}\left(b-\left(A^{\top} m+\nu\right)\right) \quad \text { and } \\
k^{f \mid b} & =k-\left(A^{\top} k\right)^{\top}\left(A^{\top} k A+\Lambda\right)^{\dagger} A^{\top} k
\end{aligned}
$$

where, for two bounded linear operators $A: B \rightarrow \mathbb{R}^{N}, \tilde{A}: B \rightarrow \mathbb{R}^{\tilde{N}}$, the $N \times \tilde{N}$ matrix $A^{\top} k \tilde{A}$ has entries

$$
\left[A^{\top} k \tilde{A}\right]_{i j}=A\left[x \mapsto \tilde{A}[k(x, \cdot)]_{j}\right]_{i}
$$

Learning Functions

- So far, we considered a concrete vector $x \in \mathbb{R}^{M}$, for which we assume the prior $\mathcal{N}\left(x ; \mu_{0}, \Sigma_{0}\right)$.
- Given a finite set of linear projections $A^{\top} x=b$, we pick a sequence of projections $y_{i}^{\top} x=s_{i}^{\top} A^{\top} x=s_{i}^{\top} b$ to iteratively update the posterior mean and covariance:

$$
\begin{aligned}
\mu_{i}=\mu_{i-1}+\Sigma_{i-1} A s_{i} \frac{1}{s_{i}^{\top} A^{\top} \sum_{i-1} A^{\top} s_{i}}\left(s_{i}^{\top} b-s_{i}^{\top} A^{\top} \mu_{i-1}\right) & =\mu_{i-1}+u_{i} \frac{\delta_{i}(b)}{L_{i i}} \text { and } \\
\Sigma_{i}=\Sigma_{i-1}-\Sigma_{i-1} A s_{i} \frac{1}{s_{i}^{\top} A^{\top} \Sigma_{i-1} A^{\top} s_{i}} s_{i}^{\top} A^{\top} \Sigma_{i-1} & =\Sigma_{i-1}-u_{i} \frac{1}{L_{i i}} u_{i}^{\top}
\end{aligned}
$$

- Recall that $\left[\Sigma_{i j}\right]_{v, w}=\operatorname{cov}_{\mid A \cdot i . j}^{\top} x=b_{: i}\left(x_{V}, x_{W}\right)$. Consider a covariance function (aka. positive definite kernel) $k(v, w)=\operatorname{cov}\left(x_{v}, x_{w}\right)$ used to build Σ_{0}, and a mean function $\mu_{0}(v)$. Then constructing $\Sigma_{0} A s_{0}$ is a partial evaluation (or currying) of k. The update is a closure of the function k. So long as we can compute this closure, we can construct a functional solver that lazily pre-computes the solution operator to predict arbitrary elements of x, from arbitrary observations β.
- In particular, x does not have to be finite, but can be a function itself.

$$
\begin{aligned}
\mu_{i}(\bullet) & =\mu_{i-1}(\bullet)+u(\bullet) \delta_{i}(b) \text { and } \\
\Sigma_{i}(\bullet, \circ) & =\Sigma_{i-1}(\bullet, \circ)-u_{i}(\bullet) u_{i}^{\top}(\circ)
\end{aligned}
$$

- For example, consider $A s_{i}=\delta\left(z-z_{i}\right)$, the point evaluation function at z_{i}. Then $u_{i}(\bullet)=k\left(\bullet, z_{i}\right) / \sqrt{L_{i i}}$ with $L_{i i}=k\left(z_{i}, z_{i}\right)>0$.

$$
\begin{aligned}
\mu_{i}(\bullet) & =\mu_{i-1}(\bullet)+u(\bullet) \delta_{i}(b) \text { and } \\
\Sigma_{i}(\bullet, \circ) & =\Sigma_{i-1}(\bullet, \circ)-u_{i}(\bullet) u_{i}^{\top}(\circ)
\end{aligned}
$$

- For example, consider $A s_{i}=\delta\left(z-z_{i}\right)$, the point evaluation function at z_{i}.

Then $u_{i}(\bullet)=k\left(\bullet, z_{i}\right) / \sqrt{L_{i i}}$ with $L_{i i}=k\left(z_{i}, z_{i}\right)>0$.

- Consider a function $f(z)$ and $s_{i}^{\top} A f=\nabla^{2} f\left(z_{i}\right)=\left.\frac{\partial^{2} f(z)}{\partial z_{1}^{2}}\right|_{z=z_{i}}+\left.\frac{\partial^{2} f(z)}{\partial z_{2}^{2}}\right|_{z=z_{i}}+\left.\frac{\partial^{2} f(z)}{\partial z_{3}^{2}}\right|_{z=z_{i}}$. Then

$$
u_{i}(\bullet)=\left.L_{i i}^{-1} \sum_{d=1}^{3} \frac{\partial k(\bullet, z)}{\partial z_{d}^{2}}\right|_{z=z_{i}}: \mathbb{R}^{3} \rightarrow \mathbb{R} \quad \text { with } \quad L_{i i}=\left.\sum_{c=1}^{3} \sum_{d=1}^{3} \frac{\partial^{2} \partial^{2} k\left(z_{i}, z_{i}\right)}{\partial z_{c}^{2} \partial z_{d}^{2}}\right|_{z=z_{i}} \in \mathbb{R}_{+}
$$

and we can encode that Poisson's equation $\nabla^{2} f=g$ holds at point z_{i}, for arbitrary forces $g(z)$, without discretizing the solution f, and predict the solution at any point z.

- More in Pförtner et al. (2022), and the next talks.

Want to know more?

- Philipp Hennig

Probabilistic Interpretation of Linear Solvers
SIAM JOpt, 25(1), 2015

- Jon Cockayne, Chris J. Oates, Ilse C.F. Ipsen, Mark Girolami

A Bayesian Conjugate Gradient Method (with discussion)
Bayesian Analysis, 14(3): 937-1012

- Jonathan Wenger, Philipp Hennig

Probabilistic Linear Solvers for Machine Learning
Adv. in NeurlPS 33 (2020)

- Jonathan Wenger, Geoff Pleiss, Marvin Pförtner, Philipp Hennig, John P. Cunningham Posterior and Computational Uncertainty in Gaussian Processes Adv. in NeurlPS 35 (2022)
- Chapter III in Philipp Hennig, Michael A. Osborne, Hans Kersting Probabilistic Numerics - Computation as Machine Learning.
Cambridge University Press, 2022

Summary: Linear Algebra and Gaussian Inference

- All linear problems (over- \& under-specified, well-posed) are special cases of Gaussian inference.
- Inference itself realizes the solution operator - common matrix decompositions amount to specific policies for the collection of observations. In this sense, matrix decompositions are data loaders.
- When implemented as Gaussian inference, these algorithms become anytime, and quantify an uncertainty. Calibrating this uncertainty is about picking the right prior. It also speeds up convergence.
- All these methods can be implemented lazily, and thus also work on functions. This allows building meshless solvers for PDEs, and

Download these slides:
 other numerical functional analysis tasks, with uncertainty quantification.

