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Linear Systems are Everywhere in Scientific Computing
Arguably, the most fundamental numerical task in scientific computing and machine learning.

Basic Statistics Probabilistic / Kernel Methods Optimization

Graphs and (Neural) Networks Differential Equations

…and many more.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 2



Linear Systems are Everywhere in Scientific Computing
Example: Probability theory.

Normal Distribution

x ∼ N (µ,Σ)

p(x) =
1√

(2π)n det(Σ)
exp(−1

2
(x − µ)TΣ−1(x − µ))
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Linear Systems are Everywhere in Scientific Computing
Example: Probabilistic Models and Kernel Methods.

Gaussian Processes
f ∼ GP(µ, k)

f | X, y ∼ GP(µpost, kpost)
µpost(x) = µ(x) + k(x, X)(k(X, X) + σ2I)−1(y − µ(X))

kpost(x0, x1) = k(x0, x1)− k(x0, X)(k(X, X) + σ2I)−1k(X, x1)
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Linear Systems are Everywhere in Scientific Computing
Example: Linear Differential Equations.

Galerkin Method
Du = f

linear differential equation

=⇒ D̂û = f̂
finite dimensional linear system

u
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Linear Systems are Everywhere in Scientific Computing
Example: Optimization.

Iterative Optimization Methods

θi ≈ argmin
θ∈Θ

L(θ)

θi = θi−1 + αiMidi

Examples: natural / conjugate / stochastic gradient descent, (Quasi-) Newton method, …
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Linear Systems are Everywhere in Scientific Computing
Example: Bayesian Deep Learning.

Feedforward Neural Network

z0(x,θ) = x

z`+1(x,θ) = σ(W`z` + b`)

y := f(x,θ) = zL(x,θ)

x

y

z11 z12

z21 z22

z31 z32

W0

W1

W2

WL

Bayesian deep learning via Laplace approximation: p(θ | D) ≈ N
(
θ;θMAP, (∇2

θL(θ)|θMAP)
−1
)

Daxberger et al. [Dax+22]
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Probabilistic Linear Solvers
Learning the solution of a linear system.
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Probabilistic Linear Solvers for Machine Learning
Solving linear systems as probabilistic inference. [Hen15; Coc+19b; WH20]

Goal
Solve large-scale linear system Ax∗ = b for x∗ ∈ Rn.

Core Insights of Probabilistic Numerics [HOG15; Coc+19a; HOK22]

I The solution to any numerical problem is fundamentally uncertain.
I Numerical algorithms are learning agents, which actively collect data and make predictions.

i = 0 i = 10 i = 15

Solution x∗ Estimate xi = E(x∗) Belief p(x∗)
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Learning The Solution
Estimating the solution of a linear system with a probabilistic linear solver. [Hen15; Coc+19b]

Goal: Solve Ax∗ = b for x∗.

Prior: x∗ ∼ N (x0,Σ0)

Likelihood: Observe x∗ via arbitrary actions si :

αi := sT
i A(x∗ − xi−1) = sT

i ri−1

p(αi | x∗) = limε→0 N (αi; 0, ε)

Posterior:

xi = x0 +Σ0ASi(ST
i AΣ0ASi)

−1ST
i (b− Ax0)

Σi = Σ0 −Σ0ASi(ST
i AΣ0ASi)

−1ST
i AΣ0

i = 1

Solution x∗
Approximation xi−1

Belief p(x∗) = N (xi−1,Σi−1)

How do we choose the linear solver actions S and the prior N (x0,Σ0)?
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Policy Choice
How do we choose the actions?

Observation: Actions “weigh” entries in the residual: αi := sT
i ri−1 = sT

i A(x∗ − xi−1)

Idea: Focus computation where residual is large: si = ri−1 =⇒ αi = ‖ri−1‖22

=⇒ BayesCG [Coc+19b]
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Interlude: Method of Conjugate Gradients
Efficiently solving linear systems with positive definite system matrix via matrix-vector multiplies.

Goal: Approximately solve linear system Ax∗ = b.

Idea: Rephrase as quadratic optimization problem and optimize. Let

f(x) =
1

2
xTAx − bTx

then ∇f(x∗) = 0 ⇐⇒ Ax∗ = b ⇐⇒ r(x∗) := b− Ax∗ = 0.

Question: How should we optimize?

1 Gradient descent: Follow di = r(xi) = −∇f(xi) s.t. 〈di, dj〉 = 0.

2 Conjugate direction method: Follow di s. t. 〈dT
i dj〉A = dT

i Adj = 0 for i 6= j.
=⇒ convergence in at most n steps.

3 Conjugate gradient method: First step d0 = r(x0).

x0

x

Oleg Alexandrov, commons.wikimedia.org/w/in-

dex.php?curid=2267598
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Policy Choice
How do we choose the actions?

Observation: Actions Si “weigh” entries in the residual: αi := sT
i ri−1 = sT

i A(x∗ − xi−1)

Idea: Focus computation where residual is large: si = ri−1 =⇒ αi = ‖ri−1‖22

=⇒ BayesCG [Coc+19b]

Theorem (Equivalence to Conjugate Gradient Method [Coc+19b; Wen+22])

If x0 = 0,Σ0 = A−1 and the actions are either conjugate gradients si = dCG
i or gradients si = ri−1, then

the posterior mean xi = xCG
i of BayesCG is equivalent to the approximation returned by CG.
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Convergence Behavior of the Conjugate Gradient Method
The spectrum of the matrix determines the convergence speed.

n = 103 κ(A) ≈ 7 · 105

0 50 100 150 200 250

iteration

10 12

10 9

10 6

10 3

100

er
ro

r A
-n

or
m

Theorem (Convergence Rate of CG[TB97])

‖x − xi‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)i

‖x − x0‖A

CG converges fast for a small condition number.
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Prior Choice
Comparing different choices of prior for BayesCG. [Coc+19b]

Prior

x∗ ∼ N (x0,Σ0)

⇒
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Algorithm: Probabilistic Linear Solver
Sequential formulation.

1 procedure PROBABILISTICLINEARSOLVER(A, b, x0 = 0,Σ0) Time Space
2 while not STOPPINGCRITERION() do
3 si ← POLICY() Select action via policy.
4 ri−1 ← b− Axi−1 Residual. O(n2) O(n)
5 αi ← sT

i ri−1 Observation. O(n) O(1)
6 zi ← Asi O(n2) O(n)
7 di ← Σi−1Asi = Σi−1zi Search direction. O(n2) O(n)
8 ηi ← sT

i AΣi−1Asi = zT
i di O(n) O(1)

9 Ci ← Ci−1 +
1
ηi
didT

i O(n) O(ni)
10 xi ← xi−1 +

αi
ηi

di Solution estimate. O(n) O(n)
11 Σi ← Σ0 − Ci Uncertainty.

12 returnN (xi,Σi)
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Application: Gaussian Processes
Scaling Gaussian processes via probabilistic linear solvers.
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Gaussian Process Regression
Learning an unknown function from data.

Goal: Supervised learning from n data points (X, y)

Prior: Gaussian process f ∼ GP(µ, k)

Likelihood: Observations y = f(X) + ε ∼ N
(
f(X), σ2I

)
Posterior: f | X, y ∼ GP(µ∗, k∗) with

µ∗(·) = µ(·) + K(·, X)K̂−1(y − µ(X))
K∗(·, ·) = K(·, ·)− K(·, X)K̂−1K(X, ·)

where K̂ = K + σ2I ∈ Rn×n.
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Computational Cost of Gaussian Processes
Gaussian processes scale prohibitively with the size n of the dataset.

Time: O(n3) Space: O(n2)

100 101 102 103 104 105 106

Training Datapoints

1 ms

1 s
1 min

1 h
1 d

1 y

Ti
m

e

100 101 102 103 104 105 106

Training Datapoints
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1 MB

1 GB

1 TB

M
em

or
y

We need to approximate the posterior.
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Approximate Gaussian Process Inference
Impact of approximations on uncertainty quantification and decision-making.

RFFGP CGGP

SVGP-fixed SVGP-opt

Data Approx. Posterior Mean Approx. Posterior Uncertainty

Approximations introduce error, which impacts downstream decisions.
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Fundamental Questions

Question 1:

How can we perform Gaussian process inference at scale?

Question 2:

How can we quantify the inevitable approximation error?
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Q1: Gaussian Process Inference at Scale?
Efficiently approximating the posterior of a Gaussian process.
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Representer Weights
The posterior mean is a linear combination of kernel functions centered at data points.

f | X, y ∼ GP(µ∗, k∗)

µ∗(·) = µ(·) + k(·, X) K̂−1(y − µ(X))
representer weights v∗

= µ(·) +
n∑

j=1

k(·, xj)(v∗)j

GP Posterior Mean Data Kernel Function(s) × Representer Weight(s)

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 23



Approximating Representer Weights
Iterative linear solvers can be used to approximate the representer weights.

µ∗(·) = µ(·) + k(·, X) K̂−1(y − µ(X))
representer weights v∗

≈ µ(·) + k(·, X)vi

Known: Can use iterative linear solvers (e.g. CG) to approximate representer weights v∗ ≈ vi.

Approx. GP Posterior Mean Data Kernel Function(s) × Approx. Representer Weight(s)
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Iterative linear solvers can be used to approximate the representer weights.

µ∗(·) = µ(·) + k(·, X) K̂−1(y − µ(X))
representer weights v∗

≈ µ(·) + k(·, X)vi

Known: Can use iterative linear solvers (e.g. CG) to approximate representer weights v∗ ≈ vi.

Approx. GP Posterior Mean Data Kernel Function(s) × Approx. Representer Weight(s)

Benefit: Time complexity O(n2) and space complexity O(nd).
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Approximating Representer Weights
Iterative linear solvers can be used to approximate the representer weights.

µ∗(·) = µ(·) + k(·, X) K̂−1(y − µ(X))
representer weights v∗

≈ µ(·) + k(·, X)vi

Known: Can use iterative linear solvers (e.g. CG) to approximate representer weights v∗ ≈ vi.

Approx. GP Posterior Mean Data Kernel Function(s) × Approx. Representer Weight(s)

Problem: Approximation error of the linear solve.
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Q2: Can We Quantify Approximation Error?
Probabilistic error quantification at prediction time using probabilistic linear solvers.
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Linear Solver Prior for GP Inference
The Gaussian process prior makes assumptions about the representer weights. [Wen+22]

Observation:
GP prior induces representer weights prior:

y − µ ∼ N
(
0, K̂

)

i = 0

Solution x∗
Approximation xi
Belief p(x∗)

Chicken & Egg Problem: How can we get a probabilistic error estimate for vi ≈ v∗, if we need K̂−1?
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Linear Solver Posterior for GP Inference
Estimation of representer weights with a probabilistic linear solver. [Wen+22]

Representer weights posterior v∗ ∼ N (vi,Σi), s.t.

vi = Ci(y − µ)

Σi = K̂−1 − Ci

K̂−1 = ≈ = Ci

i = 15

Solution x∗
Approximation xi
Belief p(x∗)
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IterGP: Computation-Aware Gaussian Process Inference
Quantifying uncertainty arising from observing finite data and performing a finite amount of computation. [Wen+22]

Goal: Approximate the Gaussian process posterior f | y ∼ GP(µ∗, k∗).

Obtained: Belief about representer weights v∗ = K̂−1(y − µ) ∼ N (vi,Σi) = N
(
vi, K̂−1 − Ci

)
Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: (f | y)(·) d
= f(·) + k(·, X) K̂−1(y − µ)

=v∗

d
= (f | v∗)(·)

2 Marginalize representer weights belief: p(f(·)) =
∫

p(f(·) | v∗)p(v∗) dv∗ = GP(f ;µi, ki)

µi(·) = µ(·) + K(·, X)vi

ki(·, ·) = K(·, ·)− K(·, X)K̂−1K(X, ·)
=E

(
(f(·)−µ∗(·))2

)
mathematical uncertainty

+ K(·, X)ΣiK(X, ·)
=E

(
(µ∗(·)−µi(·))2

)
computational uncertainty

= K(·, ·)− K(·, X)CiK(X, ·)
=E

(
(f(·)−µi(·))2

)
combined uncertainty
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Computation-Aware GP Inference Illustrated
Interpreting computational and combined uncertainty as error quantification.

IterGP-PI

i = 0
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Computation-Aware GP Inference Illustrated
Interpreting computational and combined uncertainty as error quantification.
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Computation-Aware GP Inference Illustrated
Interpreting computational and combined uncertainty as error quantification.

IterGP-PI

i = 3
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Computation-Aware GP Inference Illustrated
Interpreting computational and combined uncertainty as error quantification.
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Algorithm: IterGP
ToC

1 procedure ITERGP(µ, K, X, y, C0 = 0) Time Space
2 while not STOPPINGCRITERION() do
3 si ← POLICY() Select action via policy.
4 ri−1 ← (y − µ)− K̂vi−1 Residual. O(n2) O(n)
5 αi ← sT

i ri−1 Observation. O(n) O(1)
6 zi ← K̂si O(n2) O(n)
7 di ← Σi−1K̂si = si − Ci−1zi Search direction. O(ni) O(n)
8 ηi ← sT

i K̂Σi−1K̂si = zT
i di O(n) O(1)

9 Ci ← Ci−1 +
1
ηi
didT

i Precision matrix approx. Ci ≈ K̂−1. O(n) O(ni)
10 vi ← vi−1 +

αi
ηi

di Representer weights estimate. O(n) O(n)
11 Σi ← Σ0 − Ci Representer weights uncertainty.

12 µi(·)← µ(·) + K(·, X)vi Approximate posterior mean. O(n�n) O(n�)
13 Ki(·, ·)← K(·, ·)− K(·, X)CiK(X, ·) Combined covariance function. O(n�ni) O(n2�)
14 return GP(µi, Ki)
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Theoretical Analysis
Uncertainty as a tight bound on the relative error.

Theorem (Kanagawa et al. [Kan+18])

sup
g∈Hkσ :‖g‖Hkσ ≤1

g(x)− µg
∗(x)

error of math. post. mean

= sup
g∈Hkσ

|g(x)− µg
∗(x)|

‖g‖Hkσ
=
√

k∗(x, x) + σ2

Theorem (Wenger et al. [Wen+22])

sup
g∈Hkσ :‖g‖Hkσ ≤1

error of approximate posterior mean +

g(x)− µg
∗(x)

error of math. post. mean

+ µg
∗(x)− µg

i (x)
computational error

=
√

ki(x, x) + σ2

Exact quantification of uncertainty from limited data and limited computation.
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Policy Choice and Connection to Other Approximations
IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

Actions si Classic Analog

IterGP-Cholesky ei (Partial) Cholesky / Subset of data
IterGP-CG P̂−1ri (Preconditioned) CG
IterGP-PseudoInput k(X, zi) ≈ SVGP

Computational Uncertainty

i = 1

Combined Uncertainty

i = 1
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SVGP versus IterGP-PI
Quantifying computational uncertainty improves generalization of inducing point methods like SVGP. [Tit09; HFL13]
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Quantifying computational uncertainty improves generalization of inducing point methods like SVGP. [Tit09; HFL13]
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SVGP versus IterGP-PI
Quantifying computational uncertainty improves generalization of inducing point methods like SVGP. [Tit09; HFL13]
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What about optimizing inducing point locations?
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What about computational cost? SVGP: O(ni2) versus IterGP: O(n2i).
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Training Gaussian Processes on Large-Scale Data
Kernel hyperparameter optimization with SVGP and IterGP on a problem with n ≈ 4 · 105 data points. [Wen+24, Unpublished work]

0 ms 41.7 min 1.4 h 2.1 h 2.8 h 3.5 h
Time

−0.5

0.0

0.5

1.0

N
eg

.L
og

L
ik

.(
N

L
L

)

0 ms 41.7 min 1.4 h 2.1 h 2.8 h 3.5 h
Time

10−2

10−1

100

M
ea

n
Sq

.E
rr

or
(M

SE
)

IterGP-CG SVGP

Faster large-scale Gaussian processes with better generalization!
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Other Applications
Extending these ideas beyond what we’ve seen.
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Spatiotemporal Modeling
Spatio-temporal regression of Earth surface temperature via computation-aware filtering and smoothing. [Pfö+24, Unpublished Work]

(a) Prediction (b) Uncertainty
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Physics-Informed GP Regression
Learning to solve linear partial differential equations. [Pfö+23]
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Generalized Linear Models
Gaussian process classification with IterGLM using two different policies. [Tat+23]
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Wrapping Up

Summary
I Large-scale linear systems are ubiquitous in scientific computation.

I Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Application: Gaussian Processes

I Large-scale GP models are often as much about the approximation as they are about the data.
I We can exactly quantify the error from finite data and from the approximation via a combined

uncertainty estimate. =⇒ IterGP
I Explicit trade-off between computation and uncertainty via probabilistic linear solver.

Open Research Questions / Future Directions

I Calibration.
I Policy design for downstream tasks (Active learning, Bayesian optimization, …).
I …?
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Additional Material
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Calibration of BayesCG
Why is uncertainty quantification sometimes conservative for probabilistic linear solvers? ToC

Observation: Uncertainty quantification of probabilistic linear solvers can be conservative!

Figure: IterGP using a (conjugate) gradient policy.

Why is that? We conditioned on αi = sT
i ri−1 = sT

i A(x∗ − xi−1).

But: We’ve “cheated” for a gradient policy, since si = b− Axi−1 = A(x∗ − xi−1) = si(x∗).
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Working with Infinite Data
For IterGP it does not matter how large the dataset is, or whether we have it stored on our machine. [Wen+22] ToC

Theorem (Online GP Approximation with IterGP)

Let n, n′ ∈ N and consider training data sets X ∈ Rn×d, y ∈ Rn and
X′ ∈ Rn′×d, y′ ∈ Rn′ . Consider two sequences of actions
(si)

n
i=1 ∈ Rn and (s̃i)

n+n′
i=1 ∈ Rn+n′ such that

s̃i =

(
si
0

)
(1)

Then the posterior returned by IterGP for the dataset (X, y) using
actions si is identical to the posterior returned by IterGP for the
extended dataset using actions s̃i :

ITERGP(µ, k, X, y, (si)i) = ITERGP
(
µ, k,

(
X
X′

)
,

(
y
y′
)
, (s̃i)i

)
.
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An Approximation Method or a Better Model?
An alternative view of IterGP as a better model for the way we do inference instead of an approximation. ToC

Observation: Only once we perform computation on data, does it enter our prediction.

→ →

The distinction between data and computation vanishes.

What if we modeled this situation with a Gaussian process?

f ∼ GP(µ, k)

ỹ | f(X) ∼ N
(
ST
i f(X), σ

2ST
i Si
)

f | X, ỹ ∼ GP(µi, ki)

IterGP’s combined posterior is equivalent to exact GP regression for linearly projected data.
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