
Probabilistic Linear Solvers
Jonathan Wenger



Linear Systems are Everywhere in Scientific Computing
Arguably, the most fundamental numerical task in scientific computing and machine learning.

Basic Statistics Probabilistic / Kernel Methods Optimization

Graphs and (Neural) Networks Differential Equations

…and many more.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 2



Linear Systems are Everywhere in Scientific Computing
Example: Probability theory.

Normal Distribution

x ∼ N (µ,Σ)

p(x) =
1√

(2π)n det(Σ)
exp(−1

2
(x − µ)TΣ−1(x − µ))

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 3



Linear Systems are Everywhere in Scientific Computing
Example: Probabilistic Models and Kernel Methods.

Gaussian Processes
f ∼ GP(µ, k)

f | X, y ∼ GP(µpost, kpost)
µpost(x) = µ(x) + k(x, X)(k(X, X) + σ2I)−1(y − µ(X))

kpost(x0, x1) = k(x0, x1)− k(x0, X)(k(X, X) + σ2I)−1k(X, x1)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 4



Linear Systems are Everywhere in Scientific Computing
Example: Linear Differential Equations.

Galerkin Method
Du = f

linear differential equation

=⇒ D̂û = f̂
finite dimensional linear system

u

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 5



Linear Systems are Everywhere in Scientific Computing
Example: Optimization.

Iterative Optimization Methods

θi ≈ argmin
θ∈Θ

L(θ)

θi = θi−1 + αiMidi

Examples: natural / conjugate / stochastic gradient descent, (Quasi-) Newton method, …

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 6



Linear Systems are Everywhere in Scientific Computing
Example: Bayesian Deep Learning.

Feedforward Neural Network

z0(x,θ) = x

z`+1(x,θ) = σ(W`z` + b`)

y := f(x,θ) = zL(x,θ)

x

y

z11 z12

z21 z22

z31 z32

W0

W1

W2

WL

Bayesian deep learning via Laplace approximation: p(θ | D) ≈ N
(
θ;θMAP, (∇2

θL(θ)|θMAP)
−1
)

Daxberger et al. [Dax+22]

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 7



Probabilistic Linear Solvers
Learning the solution of a linear system.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 8



Probabilistic Linear Solvers for Machine Learning
Solving linear systems as probabilistic inference. [Hen15; Coc+19b; WH20]

Goal
Solve large-scale linear system Ax∗ = b for x∗ ∈ Rn.

Core Insights of Probabilistic Numerics [HOG15; Coc+19a; HOK22]

I The solution to any numerical problem is fundamentally uncertain.
I Numerical algorithms are learning agents, which actively collect data and make predictions.

i = 0 i = 10 i = 15

Solution x∗ Estimate xi = E(x∗) Belief p(x∗)

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 9



Probabilistic Linear Solvers for Machine Learning
Solving linear systems as probabilistic inference. [Hen15; Coc+19b; WH20]

Goal
Solve large-scale linear system Ax∗ = b for x∗ ∈ Rn.

Core Insights of Probabilistic Numerics [HOG15; Coc+19a; HOK22]

I The solution to any numerical problem is fundamentally uncertain.

I Numerical algorithms are learning agents, which actively collect data and make predictions.

i = 0 i = 10 i = 15

Solution x∗ Estimate xi = E(x∗) Belief p(x∗)

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 9



Probabilistic Linear Solvers for Machine Learning
Solving linear systems as probabilistic inference. [Hen15; Coc+19b; WH20]

Goal
Solve large-scale linear system Ax∗ = b for x∗ ∈ Rn.

Core Insights of Probabilistic Numerics [HOG15; Coc+19a; HOK22]

I The solution to any numerical problem is fundamentally uncertain.
I Numerical algorithms are learning agents, which actively collect data and make predictions.

i = 0 i = 10 i = 15

Solution x∗ Estimate xi = E(x∗) Belief p(x∗)

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 9



Probabilistic Linear Solvers for Machine Learning
Solving linear systems as probabilistic inference. [Hen15; Coc+19b; WH20]

Goal
Solve large-scale linear system Ax∗ = b for x∗ ∈ Rn.

Core Insights of Probabilistic Numerics [HOG15; Coc+19a; HOK22]

I The solution to any numerical problem is fundamentally uncertain.
I Numerical algorithms are learning agents, which actively collect data and make predictions.

i = 0 i = 10 i = 15

Solution x∗ Estimate xi = E(x∗) Belief p(x∗)
Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 9



Learning The Solution
Estimating the solution of a linear system with a probabilistic linear solver. [Hen15; Coc+19b]

Goal: Solve Ax∗ = b for x∗.

Prior: x∗ ∼ N (x0,Σ0)

Likelihood: Observe x∗ via arbitrary actions si :

αi := sT
i A(x∗ − xi−1) = sT

i ri−1

p(αi | x∗) = limε→0 N (αi; 0, ε)

Posterior:

xi = x0 +Σ0ASi(ST
i AΣ0ASi)

−1ST
i (b− Ax0)

Σi = Σ0 −Σ0ASi(ST
i AΣ0ASi)

−1ST
i AΣ0

i = 1

Solution x∗
Approximation xi−1

Belief p(x∗) = N (xi−1,Σi−1)

How do we choose the linear solver actions S and the prior N (x0,Σ0)?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 10



Learning The Solution
Estimating the solution of a linear system with a probabilistic linear solver. [Hen15; Coc+19b]

Goal: Solve Ax∗ = b for x∗.

Prior: x∗ ∼ N (x0,Σ0)

Likelihood: Observe x∗ via arbitrary actions si :

αi := sT
i A(x∗ − xi−1) = sT

i ri−1

p(αi | x∗) = limε→0 N (αi; 0, ε)

Posterior:

xi = x0 +Σ0ASi(ST
i AΣ0ASi)

−1ST
i (b− Ax0)

Σi = Σ0 −Σ0ASi(ST
i AΣ0ASi)

−1ST
i AΣ0

i = 1

Solution x∗
Approximation xi−1

Belief p(x∗) = N (xi−1,Σi−1)

Action si

How do we choose the linear solver actions S and the prior N (x0,Σ0)?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 10



Learning The Solution
Estimating the solution of a linear system with a probabilistic linear solver. [Hen15; Coc+19b]

Goal: Solve Ax∗ = b for x∗.

Prior: x∗ ∼ N (x0,Σ0)

Likelihood: Observe x∗ via arbitrary actions si :

αi := sT
i A(x∗ − xi−1) = sT

i ri−1

p(αi | x∗) = limε→0 N (αi; 0, ε)

Posterior: Bayes’ rule gives a closed form update!

xi = x0 +Σ0ASi(ST
i AΣ0ASi)

−1ST
i (b− Ax0)

Σi = Σ0 −Σ0ASi(ST
i AΣ0ASi)

−1ST
i AΣ0

i = 1

Solution x∗
Approximation xi−1

Belief p(x∗) = N (xi−1,Σi−1)

Action si

How do we choose the linear solver actions S and the prior N (x0,Σ0)?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 10



Learning The Solution
Estimating the solution of a linear system with a probabilistic linear solver. [Hen15; Coc+19b]

Goal: Solve Ax∗ = b for x∗.

Prior: x∗ ∼ N (x0,Σ0)

Likelihood: Observe x∗ via arbitrary actions si :

αi := sT
i A(x∗ − xi−1) = sT

i ri−1

p(αi | x∗) = limε→0 N (αi; 0, ε)

Posterior: x∗ | α1, . . . , αi ∼ N (xi,Σi)

xi = x0 +Σ0ASi(ST
i AΣ0ASi)

−1ST
i (b− Ax0)

Σi = Σ0 −Σ0ASi(ST
i AΣ0ASi)

−1ST
i AΣ0

i = 6

Solution x∗
Approximation xi−1

Belief p(x∗) = N (xi−1,Σi−1)

How do we choose the linear solver actions S and the prior N (x0,Σ0)?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 10



Learning The Solution
Estimating the solution of a linear system with a probabilistic linear solver. [Hen15; Coc+19b]

Goal: Solve Ax∗ = b for x∗.

Prior: x∗ ∼ N (x0,Σ0)

Likelihood: Observe x∗ via arbitrary actions si :

αi := sT
i A(x∗ − xi−1) = sT

i ri−1

p(αi | x∗) = limε→0 N (αi; 0, ε)

Posterior: x∗ | α1, . . . , αi ∼ N (xi,Σi)

xi = x0 +Σ0ASi(ST
i AΣ0ASi)

−1ST
i (b− Ax0)

Σi = Σ0 −Σ0ASi(ST
i AΣ0ASi)

−1ST
i AΣ0

i = 6

Solution x∗
Approximation xi−1

Belief p(x∗) = N (xi−1,Σi−1)

Action si

How do we choose the linear solver actions S and the prior N (x0,Σ0)?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 10



Learning The Solution
Estimating the solution of a linear system with a probabilistic linear solver. [Hen15; Coc+19b]

Goal: Solve Ax∗ = b for x∗.

Prior: x∗ ∼ N (x0,Σ0)

Likelihood: Observe x∗ via arbitrary actions si :

αi := sT
i A(x∗ − xi−1) = sT

i ri−1

p(αi | x∗) = limε→0 N (αi; 0, ε)

Posterior: x∗ | α1, . . . , αi ∼ N (xi,Σi)

xi = x0 +Σ0ASi(ST
i AΣ0ASi)

−1ST
i (b− Ax0)

Σi = Σ0 −Σ0ASi(ST
i AΣ0ASi)

−1ST
i AΣ0

i = 11

Solution x∗
Approximation xi−1

Belief p(x∗) = N (xi−1,Σi−1)

How do we choose the linear solver actions S and the prior N (x0,Σ0)?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 10



Learning The Solution
Estimating the solution of a linear system with a probabilistic linear solver. [Hen15; Coc+19b]

Goal: Solve Ax∗ = b for x∗.

Prior: x∗ ∼ N (x0,Σ0)

Likelihood: Observe x∗ via arbitrary actions si :

αi := sT
i A(x∗ − xi−1) = sT

i ri−1

p(αi | x∗) = limε→0 N (αi; 0, ε)

Posterior: x∗ | α1, . . . , αi ∼ N (xi,Σi)

xi = x0 +Σ0ASi(ST
i AΣ0ASi)

−1ST
i (b− Ax0)

Σi = Σ0 −Σ0ASi(ST
i AΣ0ASi)

−1ST
i AΣ0

i = 11

Solution x∗
Approximation xi−1

Belief p(x∗) = N (xi−1,Σi−1)

Action si

How do we choose the linear solver actions S and the prior N (x0,Σ0)?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 10



Learning The Solution
Estimating the solution of a linear system with a probabilistic linear solver. [Hen15; Coc+19b]

Goal: Solve Ax∗ = b for x∗.

Prior: x∗ ∼ N (x0,Σ0)

Likelihood: Observe x∗ via arbitrary actions si :

αi := sT
i A(x∗ − xi−1) = sT

i ri−1

p(αi | x∗) = limε→0 N (αi; 0, ε)

Posterior: x∗ | α1, . . . , αi ∼ N (xi,Σi)

xi = x0 +Σ0ASi(ST
i AΣ0ASi)

−1ST
i (b− Ax0)

Σi = Σ0 −Σ0ASi(ST
i AΣ0ASi)

−1ST
i AΣ0

i = 16

Solution x∗
Approximation xi−1

Belief p(x∗) = N (xi−1,Σi−1)

How do we choose the linear solver actions S and the prior N (x0,Σ0)?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 10



Learning The Solution
Estimating the solution of a linear system with a probabilistic linear solver. [Hen15; Coc+19b]

Goal: Solve Ax∗ = b for x∗.

Prior: x∗ ∼ N (x0,Σ0)

Likelihood: Observe x∗ via arbitrary actions si :

αi := sT
i A(x∗ − xi−1) = sT

i ri−1

p(αi | x∗) = limε→0 N (αi; 0, ε)

Posterior: x∗ | α1, . . . , αi ∼ N (xi,Σi)

xi = x0 +Σ0ASi(ST
i AΣ0ASi)

−1ST
i (b− Ax0)

Σi = Σ0 −Σ0ASi(ST
i AΣ0ASi)

−1ST
i AΣ0

i = 16

Solution x∗
Approximation xi−1

Belief p(x∗) = N (xi−1,Σi−1)

How do we choose the linear solver actions S and the prior N (x0,Σ0)?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 10



Policy Choice
How do we choose the actions?

Observation: Actions “weigh” entries in the residual: αi := sT
i ri−1 = sT

i A(x∗ − xi−1)

Idea: Focus computation where residual is large: si = ri−1 =⇒ αi = ‖ri−1‖22

=⇒ BayesCG [Coc+19b]

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 11



Policy Choice
How do we choose the actions?

Observation: Actions “weigh” entries in the residual: αi := sT
i ri−1 = sT

i A(x∗ − xi−1)

Idea: Focus computation where residual is large: si = ri−1 =⇒ αi = ‖ri−1‖22

=⇒ BayesCG [Coc+19b]

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 11



Interlude: Method of Conjugate Gradients
Efficiently solving linear systems with positive definite system matrix via matrix-vector multiplies.

Goal: Approximately solve linear system Ax∗ = b.

Idea: Rephrase as quadratic optimization problem and optimize. Let

f(x) =
1

2
xTAx − bTx

then ∇f(x∗) = 0 ⇐⇒ Ax∗ = b ⇐⇒ r(x∗) := b− Ax∗ = 0.

Question: How should we optimize?

1 Gradient descent: Follow di = r(xi) = −∇f(xi) s.t. 〈di, dj〉 = 0.

2 Conjugate direction method: Follow di s. t. 〈dT
i dj〉A = dT

i Adj = 0 for i 6= j.
=⇒ convergence in at most n steps.

3 Conjugate gradient method: First step d0 = r(x0).

x0

x

Oleg Alexandrov, commons.wikimedia.org/w/in-

dex.php?curid=2267598

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 12



Interlude: Method of Conjugate Gradients
Efficiently solving linear systems with positive definite system matrix via matrix-vector multiplies.

Goal: Approximately solve linear system Ax∗ = b.

Idea: Rephrase as quadratic optimization problem and optimize. Let

f(x) =
1

2
xTAx − bTx

then ∇f(x∗) = 0 ⇐⇒ Ax∗ = b ⇐⇒ r(x∗) := b− Ax∗ = 0.

Question: How should we optimize?
1 Gradient descent: Follow di = r(xi) = −∇f(xi) s.t. 〈di, dj〉 = 0.

2 Conjugate direction method: Follow di s. t. 〈dT
i dj〉A = dT

i Adj = 0 for i 6= j.
=⇒ convergence in at most n steps.

3 Conjugate gradient method: First step d0 = r(x0).

x0

x

Oleg Alexandrov, commons.wikimedia.org/w/in-

dex.php?curid=2267598

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 12



Interlude: Method of Conjugate Gradients
Efficiently solving linear systems with positive definite system matrix via matrix-vector multiplies.

Goal: Approximately solve linear system Ax∗ = b.

Idea: Rephrase as quadratic optimization problem and optimize. Let

f(x) =
1

2
xTAx − bTx

then ∇f(x∗) = 0 ⇐⇒ Ax∗ = b ⇐⇒ r(x∗) := b− Ax∗ = 0.

Question: How should we optimize?
1 Gradient descent: Follow di = r(xi) = −∇f(xi) s.t. 〈di, dj〉 = 0.

2 Conjugate direction method: Follow di s. t. 〈dT
i dj〉A = dT

i Adj = 0 for i 6= j.
=⇒ convergence in at most n steps.

3 Conjugate gradient method: First step d0 = r(x0).

x0

x

Oleg Alexandrov, commons.wikimedia.org/w/in-

dex.php?curid=2267598

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 12



Interlude: Method of Conjugate Gradients
Efficiently solving linear systems with positive definite system matrix via matrix-vector multiplies.

Goal: Approximately solve linear system Ax∗ = b.

Idea: Rephrase as quadratic optimization problem and optimize. Let

f(x) =
1

2
xTAx − bTx

then ∇f(x∗) = 0 ⇐⇒ Ax∗ = b ⇐⇒ r(x∗) := b− Ax∗ = 0.

Question: How should we optimize?
1 Gradient descent: Follow di = r(xi) = −∇f(xi) s.t. 〈di, dj〉 = 0.

2 Conjugate direction method: Follow di s. t. 〈dT
i dj〉A = dT

i Adj = 0 for i 6= j.
=⇒ convergence in at most n steps.

3 Conjugate gradient method: First step d0 = r(x0).

x0

x

Oleg Alexandrov, commons.wikimedia.org/w/in-

dex.php?curid=2267598

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 12



Policy Choice
How do we choose the actions?

Observation: Actions Si “weigh” entries in the residual: αi := sT
i ri−1 = sT

i A(x∗ − xi−1)

Idea: Focus computation where residual is large: si = ri−1 =⇒ αi = ‖ri−1‖22

=⇒ BayesCG [Coc+19b]

Theorem (Equivalence to Conjugate Gradient Method [Coc+19b; Wen+22])

If x0 = 0,Σ0 = A−1 and the actions are either conjugate gradients si = dCG
i or gradients si = ri−1, then

the posterior mean xi = xCG
i of BayesCG is equivalent to the approximation returned by CG.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 13



Convergence Behavior of the Conjugate Gradient Method
The spectrum of the matrix determines the convergence speed.

n = 103 κ(A) ≈ 7 · 105

0 50 100 150 200 250

iteration

10 12

10 9

10 6

10 3

100

er
ro

r A
-n

or
m

Theorem (Convergence Rate of CG[TB97])

‖x − xi‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)i

‖x − x0‖A

CG converges fast for a small condition number.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 14



Prior Choice
Comparing different choices of prior for BayesCG. [Coc+19b]

Prior

x∗ ∼ N (x0,Σ0)

⇒

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 15



Prior Choice
Comparing different choices of prior for BayesCG. [Coc+19b]

Prior

x∗ ∼ N (x0,Σ0)

⇒

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 15



Algorithm: Probabilistic Linear Solver
Sequential formulation.

1 procedure PROBABILISTICLINEARSOLVER(A, b, x0 = 0,Σ0) Time Space
2 while not STOPPINGCRITERION() do
3 si ← POLICY() Select action via policy.
4 ri−1 ← b− Axi−1 Residual. O(n2) O(n)
5 αi ← sT

i ri−1 Observation. O(n) O(1)
6 zi ← Asi O(n2) O(n)
7 di ← Σi−1Asi = Σi−1zi Search direction. O(n2) O(n)
8 ηi ← sT

i AΣi−1Asi = zT
i di O(n) O(1)

9 Ci ← Ci−1 +
1
ηi
didT

i O(n) O(ni)
10 xi ← xi−1 +

αi
ηi

di Solution estimate. O(n) O(n)
11 Σi ← Σ0 − Ci Uncertainty.

12 returnN (xi,Σi)

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 16



Application: Gaussian Processes
Scaling Gaussian processes via probabilistic linear solvers.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 17



Gaussian Process Regression
Learning an unknown function from data.

Goal: Supervised learning from n data points (X, y)

Prior: Gaussian process f ∼ GP(µ, k)

Likelihood: Observations y = f(X) + ε ∼ N
(
f(X), σ2I

)
Posterior: f | X, y ∼ GP(µ∗, k∗) with

µ∗(·) = µ(·) + K(·, X)K̂−1(y − µ(X))
K∗(·, ·) = K(·, ·)− K(·, X)K̂−1K(X, ·)

where K̂ = K + σ2I ∈ Rn×n.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 18



Gaussian Process Regression
Learning an unknown function from data.

Goal: Supervised learning from n data points (X, y)

Prior: Gaussian process f ∼ GP(µ, k)

Likelihood: Observations y = f(X) + ε ∼ N
(
f(X), σ2I

)
Posterior: f | X, y ∼ GP(µ∗, k∗) with

µ∗(·) = µ(·) + K(·, X)K̂−1(y − µ(X))
K∗(·, ·) = K(·, ·)− K(·, X)K̂−1K(X, ·)

where K̂ = K + σ2I ∈ Rn×n.

K̂ =

n×n

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 18



Computational Cost of Gaussian Processes
Gaussian processes scale prohibitively with the size n of the dataset.

Time: O(n3) Space: O(n2)

100 101 102 103 104 105 106

Training Datapoints

1 ms

1 s
1 min

1 h
1 d

1 y

Ti
m

e

100 101 102 103 104 105 106

Training Datapoints

1 kB

1 MB

1 GB

1 TB

M
em

or
y

We need to approximate the posterior.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 19



Computational Cost of Gaussian Processes
Gaussian processes scale prohibitively with the size n of the dataset.

Time: O(n3) Space: O(n2)

100 101 102 103 104 105 106

Training Datapoints

1 ms

1 s
1 min

1 h
1 d

1 y

Ti
m

e

100 101 102 103 104 105 106

Training Datapoints

1 kB

1 MB

1 GB

1 TB

M
em

or
y
We need to approximate the posterior.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 19



Approximate Gaussian Process Inference
Impact of approximations on uncertainty quantification and decision-making.

RFFGP CGGP

SVGP-fixed SVGP-opt

Data Approx. Posterior Mean Approx. Posterior Uncertainty

Approximations introduce error, which impacts downstream decisions.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 20



Approximate Gaussian Process Inference
Impact of approximations on uncertainty quantification and decision-making.

RFFGP CGGP

SVGP-fixed SVGP-opt

Data Approx. Posterior Mean Approx. Posterior Uncertainty

Approximations introduce error, which impacts downstream decisions.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 20



Fundamental Questions

Question 1:

How can we perform Gaussian process inference at scale?

Question 2:

How can we quantify the inevitable approximation error?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 21



Fundamental Questions

Question 1:

How can we perform Gaussian process inference at scale?

Question 2:

How can we quantify the inevitable approximation error?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 21



Q1: Gaussian Process Inference at Scale?
Efficiently approximating the posterior of a Gaussian process.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 22



Representer Weights
The posterior mean is a linear combination of kernel functions centered at data points.

f | X, y ∼ GP(µ∗, k∗)

µ∗(·) = µ(·) + k(·, X) K̂−1(y − µ(X))
representer weights v∗

= µ(·) +
n∑

j=1

k(·, xj)(v∗)j

GP Posterior Mean Data Kernel Function(s) × Representer Weight(s)

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 23



Approximating Representer Weights
Iterative linear solvers can be used to approximate the representer weights.

µ∗(·) = µ(·) + k(·, X) K̂−1(y − µ(X))
representer weights v∗

≈ µ(·) + k(·, X)vi

Known: Can use iterative linear solvers (e.g. CG) to approximate representer weights v∗ ≈ vi.

Approx. GP Posterior Mean Data Kernel Function(s) × Approx. Representer Weight(s)

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 24



Approximating Representer Weights
Iterative linear solvers can be used to approximate the representer weights.

µ∗(·) = µ(·) + k(·, X) K̂−1(y − µ(X))
representer weights v∗

≈ µ(·) + k(·, X)vi

Known: Can use iterative linear solvers (e.g. CG) to approximate representer weights v∗ ≈ vi.

Approx. GP Posterior Mean Data Kernel Function(s) × Approx. Representer Weight(s)

Benefit: Time complexity O(n2) and space complexity O(nd).
Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 24



Approximating Representer Weights
Iterative linear solvers can be used to approximate the representer weights.

µ∗(·) = µ(·) + k(·, X) K̂−1(y − µ(X))
representer weights v∗

≈ µ(·) + k(·, X)vi

Known: Can use iterative linear solvers (e.g. CG) to approximate representer weights v∗ ≈ vi.

Approx. GP Posterior Mean Data Kernel Function(s) × Approx. Representer Weight(s)

Problem: Approximation error of the linear solve.
Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 24



Q2: Can We Quantify Approximation Error?
Probabilistic error quantification at prediction time using probabilistic linear solvers.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 25



Linear Solver Prior for GP Inference
The Gaussian process prior makes assumptions about the representer weights. [Wen+22]

Observation:
GP prior induces representer weights prior:

y − µ ∼ N
(
0, K̂

)

i = 0

Solution x∗
Approximation xi
Belief p(x∗)

Chicken & Egg Problem: How can we get a probabilistic error estimate for vi ≈ v∗, if we need K̂−1?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 26



Linear Solver Prior for GP Inference
The Gaussian process prior makes assumptions about the representer weights. [Wen+22]

Observation:
GP prior induces representer weights prior:

y − µ ∼ N
(
0, K̂

)
⇒ v∗ = K̂−1(y − µ) ∼ N

(
0

=v0

, K̂−1

=Σ0

)

i = 0

Solution x∗
Approximation xi
Belief p(x∗)

Chicken & Egg Problem: How can we get a probabilistic error estimate for vi ≈ v∗, if we need K̂−1?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 26



Linear Solver Posterior for GP Inference
Estimation of representer weights with a probabilistic linear solver. [Wen+22]

Representer weights posterior v∗ ∼ N (vi,Σi), s.t.

vi = Ci(y − µ)

Σi = K̂−1 − Ci

K̂−1 = ≈ = Ci

i = 15

Solution x∗
Approximation xi
Belief p(x∗)

Chicken & Egg Problem: How can we get a probabilistic error estimate for vi ≈ v∗, if we need K̂−1?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 26



Linear Solver Posterior for GP Inference
Estimation of representer weights with a probabilistic linear solver. [Wen+22]

Representer weights posterior v∗ ∼ N (vi,Σi), s.t.

vi = Ci(y − µ)

Σi = K̂−1 − Ci

K̂−1 = ≈ = Ci

i = 15

Solution x∗
Approximation xi
Belief p(x∗)

Chicken & Egg Problem: How can we get a probabilistic error estimate for vi ≈ v∗, if we need K̂−1?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 26



IterGP: Computation-Aware Gaussian Process Inference
Quantifying uncertainty arising from observing finite data and performing a finite amount of computation. [Wen+22]

Goal: Approximate the Gaussian process posterior f | y ∼ GP(µ∗, k∗).

Obtained: Belief about representer weights v∗ = K̂−1(y − µ) ∼ N (vi,Σi) = N
(
vi, K̂−1 − Ci

)
Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: (f | y)(·) d
= f(·) + k(·, X) K̂−1(y − µ)

=v∗

d
= (f | v∗)(·)

2 Marginalize representer weights belief: p(f(·)) =
∫

p(f(·) | v∗)p(v∗) dv∗ = GP(f ;µi, ki)

µi(·) = µ(·) + K(·, X)vi

ki(·, ·) = K(·, ·)− K(·, X)K̂−1K(X, ·)
=E

(
(f(·)−µ∗(·))2

)
mathematical uncertainty

+ K(·, X)ΣiK(X, ·)
=E

(
(µ∗(·)−µi(·))2

)
computational uncertainty

= K(·, ·)− K(·, X)CiK(X, ·)
=E

(
(f(·)−µi(·))2

)
combined uncertainty

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 27



IterGP: Computation-Aware Gaussian Process Inference
Quantifying uncertainty arising from observing finite data and performing a finite amount of computation. [Wen+22]

Goal: Approximate the Gaussian process posterior f | y ∼ GP(µ∗, k∗).
Obtained: Belief about representer weights v∗ = K̂−1(y − µ) ∼ N (vi,Σi) = N

(
vi, K̂−1 − Ci

)

Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: (f | y)(·) d
= f(·) + k(·, X) K̂−1(y − µ)

=v∗

d
= (f | v∗)(·)

2 Marginalize representer weights belief: p(f(·)) =
∫

p(f(·) | v∗)p(v∗) dv∗ = GP(f ;µi, ki)

µi(·) = µ(·) + K(·, X)vi

ki(·, ·) = K(·, ·)− K(·, X)K̂−1K(X, ·)
=E

(
(f(·)−µ∗(·))2

)
mathematical uncertainty

+ K(·, X)ΣiK(X, ·)
=E

(
(µ∗(·)−µi(·))2

)
computational uncertainty

= K(·, ·)− K(·, X)CiK(X, ·)
=E

(
(f(·)−µi(·))2

)
combined uncertainty

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 27



IterGP: Computation-Aware Gaussian Process Inference
Quantifying uncertainty arising from observing finite data and performing a finite amount of computation. [Wen+22]

Goal: Approximate the Gaussian process posterior f | y ∼ GP(µ∗, k∗).
Obtained: Belief about representer weights v∗ = K̂−1(y − µ) ∼ N (vi,Σi) = N

(
vi, K̂−1 − Ci

)
Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: (f | y)(·) d
= f(·) + k(·, X) K̂−1(y − µ)

=v∗

d
= (f | v∗)(·)

2 Marginalize representer weights belief: p(f(·)) =
∫

p(f(·) | v∗)p(v∗) dv∗ = GP(f ;µi, ki)

µi(·) = µ(·) + K(·, X)vi

ki(·, ·) = K(·, ·)− K(·, X)K̂−1K(X, ·)
=E

(
(f(·)−µ∗(·))2

)
mathematical uncertainty

+ K(·, X)ΣiK(X, ·)
=E

(
(µ∗(·)−µi(·))2

)
computational uncertainty

= K(·, ·)− K(·, X)CiK(X, ·)
=E

(
(f(·)−µi(·))2

)
combined uncertainty

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 27



IterGP: Computation-Aware Gaussian Process Inference
Quantifying uncertainty arising from observing finite data and performing a finite amount of computation. [Wen+22]

Goal: Approximate the Gaussian process posterior f | y ∼ GP(µ∗, k∗).
Obtained: Belief about representer weights v∗ = K̂−1(y − µ) ∼ N (vi,Σi) = N

(
vi, K̂−1 − Ci

)
Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: (f | y)(·) d
= f(·) + k(·, X) K̂−1(y − µ)

=v∗

d
= (f | v∗)(·)

2 Marginalize representer weights belief: p(f(·)) =
∫

p(f(·) | v∗)p(v∗) dv∗ = GP(f ;µi, ki)

µi(·) = µ(·) + K(·, X)vi

ki(·, ·) = K(·, ·)− K(·, X)K̂−1K(X, ·)
=E

(
(f(·)−µ∗(·))2

)
mathematical uncertainty

+ K(·, X)ΣiK(X, ·)
=E

(
(µ∗(·)−µi(·))2

)
computational uncertainty

= K(·, ·)− K(·, X)CiK(X, ·)
=E

(
(f(·)−µi(·))2

)
combined uncertainty

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 27



IterGP: Computation-Aware Gaussian Process Inference
Quantifying uncertainty arising from observing finite data and performing a finite amount of computation. [Wen+22]

Goal: Approximate the Gaussian process posterior f | y ∼ GP(µ∗, k∗).
Obtained: Belief about representer weights v∗ = K̂−1(y − µ) ∼ N (vi,Σi) = N

(
vi, K̂−1 − Ci

)
Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: (f | y)(·) d
= f(·) + k(·, X) K̂−1(y − µ)

=v∗

d
= (f | v∗)(·)

2 Marginalize representer weights belief: p(f(·)) =
∫

p(f(·) | v∗)p(v∗) dv∗ = GP(f ;µi, ki)

µi(·) = µ(·) + K(·, X)vi

ki(·, ·) = K(·, ·)− K(·, X)K̂−1K(X, ·)
=E

(
(f(·)−µ∗(·))2

)
mathematical uncertainty

+ K(·, X)ΣiK(X, ·)
=E

(
(µ∗(·)−µi(·))2

)
computational uncertainty

= K(·, ·)− K(·, X)CiK(X, ·)
=E

(
(f(·)−µi(·))2

)
combined uncertainty

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 27



IterGP: Computation-Aware Gaussian Process Inference
Quantifying uncertainty arising from observing finite data and performing a finite amount of computation. [Wen+22]

Goal: Approximate the Gaussian process posterior f | y ∼ GP(µ∗, k∗).
Obtained: Belief about representer weights v∗ = K̂−1(y − µ) ∼ N (vi,Σi) = N

(
vi, K̂−1 − Ci

)
Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: (f | y)(·) d
= f(·) + k(·, X) K̂−1(y − µ)

=v∗

d
= (f | v∗)(·)

2 Marginalize representer weights belief: p(f(·)) =
∫

p(f(·) | v∗)p(v∗) dv∗ = GP(f ;µi, ki)

µi(·) = µ(·) + K(·, X)vi

ki(·, ·) = K(·, ·)− K(·, X)K̂−1K(X, ·)
=E

(
(f(·)−µ∗(·))2

)
mathematical uncertainty

+ K(·, X)ΣiK(X, ·)
=E

(
(µ∗(·)−µi(·))2

)
computational uncertainty

= K(·, ·)− K(·, X)CiK(X, ·)
=E

(
(f(·)−µi(·))2

)
combined uncertainty

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 27



IterGP: Computation-Aware Gaussian Process Inference
Quantifying uncertainty arising from observing finite data and performing a finite amount of computation. [Wen+22]

Goal: Approximate the Gaussian process posterior f | y ∼ GP(µ∗, k∗).
Obtained: Belief about representer weights v∗ = K̂−1(y − µ) ∼ N (vi,Σi) = N

(
vi, K̂−1 − Ci

)
Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: (f | y)(·) d
= f(·) + k(·, X) K̂−1(y − µ)

=v∗

d
= (f | v∗)(·)

2 Marginalize representer weights belief: p(f(·)) =
∫

p(f(·) | v∗)p(v∗) dv∗ = GP(f ;µi, ki)

µi(·) = µ(·) + K(·, X)vi

ki(·, ·) = K(·, ·)− K(·, X)K̂−1K(X, ·)
=E

(
(f(·)−µ∗(·))2

)
mathematical uncertainty

+ K(·, X)ΣiK(X, ·)
=E

(
(µ∗(·)−µi(·))2

)
computational uncertainty

= K(·, ·)− K(·, X)CiK(X, ·)
=E

(
(f(·)−µi(·))2

)
combined uncertainty

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 27



IterGP: Computation-Aware Gaussian Process Inference
Quantifying uncertainty arising from observing finite data and performing a finite amount of computation. [Wen+22]

Goal: Approximate the Gaussian process posterior f | y ∼ GP(µ∗, k∗).
Obtained: Belief about representer weights v∗ = K̂−1(y − µ) ∼ N (vi,Σi) = N

(
vi, K̂−1 − Ci

)
Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: (f | y)(·) d
= f(·) + k(·, X) K̂−1(y − µ)

=v∗

d
= (f | v∗)(·)

2 Marginalize representer weights belief: p(f(·)) =
∫

p(f(·) | v∗)p(v∗) dv∗ = GP(f ;µi, ki)

µi(·) = µ(·) + K(·, X)vi
ki(·, ·) = K(·, ·)− K(·, X)K̂−1K(X, ·)

=E
(
(f(·)−µ∗(·))2

)
mathematical uncertainty

+ K(·, X)ΣiK(X, ·)
=E

(
(µ∗(·)−µi(·))2

)
computational uncertainty

= K(·, ·)− K(·, X)CiK(X, ·)
=E

(
(f(·)−µi(·))2

)
combined uncertainty

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 27



Computation-Aware GP Inference Illustrated
Interpreting computational and combined uncertainty as error quantification.

IterGP-PI

i = 0

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Va
ria

nc
e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 28



Computation-Aware GP Inference Illustrated
Interpreting computational and combined uncertainty as error quantification.

IterGP-PI

i = 1

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Va
ria

nc
e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 28



Computation-Aware GP Inference Illustrated
Interpreting computational and combined uncertainty as error quantification.

IterGP-PI

i = 2

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Va
ria

nc
e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 28



Computation-Aware GP Inference Illustrated
Interpreting computational and combined uncertainty as error quantification.

IterGP-PI

i = 3

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Va
ria

nc
e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 28



Computation-Aware GP Inference Illustrated
Interpreting computational and combined uncertainty as error quantification.

IterGP-PI

i = 5

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Va
ria

nc
e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 28



Algorithm: IterGP
ToC

1 procedure ITERGP(µ, K, X, y, C0 = 0) Time Space
2 while not STOPPINGCRITERION() do
3 si ← POLICY() Select action via policy.
4 ri−1 ← (y − µ)− K̂vi−1 Residual. O(n2) O(n)
5 αi ← sT

i ri−1 Observation. O(n) O(1)
6 zi ← K̂si O(n2) O(n)
7 di ← Σi−1K̂si = si − Ci−1zi Search direction. O(ni) O(n)
8 ηi ← sT

i K̂Σi−1K̂si = zT
i di O(n) O(1)

9 Ci ← Ci−1 +
1
ηi
didT

i Precision matrix approx. Ci ≈ K̂−1. O(n) O(ni)
10 vi ← vi−1 +

αi
ηi

di Representer weights estimate. O(n) O(n)
11 Σi ← Σ0 − Ci Representer weights uncertainty.

12 µi(·)← µ(·) + K(·, X)vi Approximate posterior mean. O(n�n) O(n�)
13 Ki(·, ·)← K(·, ·)− K(·, X)CiK(X, ·) Combined covariance function. O(n�ni) O(n2�)
14 return GP(µi, Ki)

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 29



Theoretical Analysis
Uncertainty as a tight bound on the relative error.

Theorem (Kanagawa et al. [Kan+18])

sup
g∈Hkσ :‖g‖Hkσ ≤1

g(x)− µg
∗(x)

error of math. post. mean

= sup
g∈Hkσ

|g(x)− µg
∗(x)|

‖g‖Hkσ
=
√

k∗(x, x) + σ2

Theorem (Wenger et al. [Wen+22])

sup
g∈Hkσ :‖g‖Hkσ ≤1

error of approximate posterior mean +

g(x)− µg
∗(x)

error of math. post. mean

+ µg
∗(x)− µg

i (x)
computational error

=
√

ki(x, x) + σ2

Exact quantification of uncertainty from limited data and limited computation.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 30



Theoretical Analysis
Uncertainty as a tight bound on the relative error.

Theorem (Kanagawa et al. [Kan+18])

sup
g∈Hkσ :‖g‖Hkσ ≤1

g(x)− µg
∗(x)

error of math. post. mean

= sup
g∈Hkσ

|g(x)− µg
∗(x)|

‖g‖Hkσ
=
√

k∗(x, x) + σ2

Theorem (Wenger et al. [Wen+22])

sup
g∈Hkσ :‖g‖Hkσ ≤1

error of approximate posterior mean +

g(x)− µg
∗(x)

error of math. post. mean

+ µg
∗(x)− µg

i (x)
computational error

=
√

ki(x, x) + σ2

Exact quantification of uncertainty from limited data and limited computation.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 30



Theoretical Analysis
Uncertainty as a tight bound on the relative error.

Theorem (Kanagawa et al. [Kan+18])

sup
g∈Hkσ :‖g‖Hkσ ≤1

g(x)− µg
∗(x)

error of math. post. mean

= sup
g∈Hkσ

|g(x)− µg
∗(x)|

‖g‖Hkσ
=
√

k∗(x, x) + σ2

Theorem (Wenger et al. [Wen+22])

sup
g∈Hkσ :‖g‖Hkσ ≤1

error of approximate posterior mean +

g(x)− µg
∗(x)

error of math. post. mean

+ µg
∗(x)− µg

i (x)
computational error

=
√

ki(x, x) + σ2

Exact quantification of uncertainty from limited data and limited computation.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 30



Policy Choice and Connection to Other Approximations
IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

Actions si Classic Analog

IterGP-Cholesky ei (Partial) Cholesky / Subset of data
IterGP-CG P̂−1ri (Preconditioned) CG
IterGP-PseudoInput k(X, zi) ≈ SVGP

Computational Uncertainty

i = 1

Combined Uncertainty

i = 1

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 31



Policy Choice and Connection to Other Approximations
IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

Actions si Classic Analog

IterGP-Cholesky ei (Partial) Cholesky / Subset of data
IterGP-CG P̂−1ri (Preconditioned) CG
IterGP-PseudoInput k(X, zi) ≈ SVGP

Computational Uncertainty

i = 2

Combined Uncertainty

i = 2

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 31



Policy Choice and Connection to Other Approximations
IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

Actions si Classic Analog

IterGP-Cholesky ei (Partial) Cholesky / Subset of data
IterGP-CG P̂−1ri (Preconditioned) CG
IterGP-PseudoInput k(X, zi) ≈ SVGP

Computational Uncertainty

i = 4

Combined Uncertainty

i = 4

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 31



Policy Choice and Connection to Other Approximations
IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

Actions si Classic Analog

IterGP-Cholesky ei (Partial) Cholesky / Subset of data
IterGP-CG P̂−1ri (Preconditioned) CG
IterGP-PseudoInput k(X, zi) ≈ SVGP

Computational Uncertainty

i = 8

Combined Uncertainty

i = 8

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 31



Policy Choice and Connection to Other Approximations
IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

Actions si Classic Analog

IterGP-Cholesky ei (Partial) Cholesky / Subset of data
IterGP-CG P̂−1ri (Preconditioned) CG
IterGP-PseudoInput k(X, zi) ≈ SVGP

Computational Uncertainty

i = 1

Combined Uncertainty

i = 1

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 31



Policy Choice and Connection to Other Approximations
IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

Actions si Classic Analog

IterGP-Cholesky ei (Partial) Cholesky / Subset of data
IterGP-CG P̂−1ri (Preconditioned) CG
IterGP-PseudoInput k(X, zi) ≈ SVGP

Computational Uncertainty

i = 2

Combined Uncertainty

i = 2

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 31



Policy Choice and Connection to Other Approximations
IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

Actions si Classic Analog

IterGP-Cholesky ei (Partial) Cholesky / Subset of data
IterGP-CG P̂−1ri (Preconditioned) CG
IterGP-PseudoInput k(X, zi) ≈ SVGP

Computational Uncertainty

i = 4

Combined Uncertainty

i = 4

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 31



Policy Choice and Connection to Other Approximations
IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

Actions si Classic Analog

IterGP-Cholesky ei (Partial) Cholesky / Subset of data
IterGP-CG P̂−1ri (Preconditioned) CG
IterGP-PseudoInput k(X, zi) ≈ SVGP

Computational Uncertainty

i = 8

Combined Uncertainty

i = 8

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 31



Policy Choice and Connection to Other Approximations
IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

Actions si Classic Analog

IterGP-Cholesky ei (Partial) Cholesky / Subset of data
IterGP-CG P̂−1ri (Preconditioned) CG
IterGP-PseudoInput k(X, zi) ≈ SVGP

Computational Uncertainty

i = 1

Combined Uncertainty

i = 1

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 31



Policy Choice and Connection to Other Approximations
IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

Actions si Classic Analog

IterGP-Cholesky ei (Partial) Cholesky / Subset of data
IterGP-CG P̂−1ri (Preconditioned) CG
IterGP-PseudoInput k(X, zi) ≈ SVGP

Computational Uncertainty

i = 2

Combined Uncertainty

i = 2

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 31



Policy Choice and Connection to Other Approximations
IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

Actions si Classic Analog

IterGP-Cholesky ei (Partial) Cholesky / Subset of data
IterGP-CG P̂−1ri (Preconditioned) CG
IterGP-PseudoInput k(X, zi) ≈ SVGP

Computational Uncertainty

i = 4

Combined Uncertainty

i = 4

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 31



Policy Choice and Connection to Other Approximations
IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

Actions si Classic Analog

IterGP-Cholesky ei (Partial) Cholesky / Subset of data
IterGP-CG P̂−1ri (Preconditioned) CG
IterGP-PseudoInput k(X, zi) ≈ SVGP

Computational Uncertainty

i = 8

Combined Uncertainty

i = 8

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 31



SVGP versus IterGP-PI
Quantifying computational uncertainty improves generalization of inducing point methods like SVGP. [Tit09; HFL13]

0.0 0.5 1.0

−2

−1

0

1

2

SVGP-fixed

0.0 0.5 1.0

IterGP-PI

Latent function Training data Mathematical Posterior GP mean GP uncertainty

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 32



SVGP versus IterGP-PI
Quantifying computational uncertainty improves generalization of inducing point methods like SVGP. [Tit09; HFL13]

1.10

1.15

1.20

N
L

L

Synthetic
(n = 1,024, d = 5)

2.0

2.5

3.0

3.5

Parkinson’s
(n = 5,287, d = 21)

0.75

1.00

1.25

Bike Sharing
(n = 15,641, d = 16)

0.9

1.0

Protein
(n = 41,157, d = 9)

−0.50

−0.25

0.00

KEGGundir
(n = 57,247, d = 26)

SVGP
IterGP-PI

102 103

Ind. Points / Iteration

0.70

0.75

R
M

SE

102 103

Ind. Points / Iteration

2

3

4

102 103

Ind. Points / Iteration

0.4

0.6

0.8

102 103

Ind. Points / Iteration

0.55

0.60

0.65

102 103

Ind. Points / Iteration

0.15

0.20

0.25 SVGP
IterGP-PI

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 32



SVGP versus IterGP-PI
Quantifying computational uncertainty improves generalization of inducing point methods like SVGP. [Tit09; HFL13]

1.10

1.15

1.20

N
L

L

Synthetic
(n = 1,024, d = 5)

2.0

2.5

3.0

3.5

Parkinson’s
(n = 5,287, d = 21)

0.75

1.00

1.25

Bike Sharing
(n = 15,641, d = 16)

0.9

1.0

Protein
(n = 41,157, d = 9)

−0.50

−0.25

0.00

KEGGundir
(n = 57,247, d = 26)

SVGP
IterGP-PI

102 103

Ind. Points / Iteration

0.70

0.75

R
M

SE

102 103

Ind. Points / Iteration

2

3

4

102 103

Ind. Points / Iteration

0.4

0.6

0.8

102 103

Ind. Points / Iteration

0.55

0.60

0.65

102 103

Ind. Points / Iteration

0.15

0.20

0.25 SVGP
IterGP-PI

What about optimizing inducing point locations?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 32



SVGP versus IterGP-PI
Quantifying computational uncertainty improves generalization of inducing point methods like SVGP. [Tit09; HFL13]

1.10

1.15

1.20

N
L

L

Synthetic
(n = 1,024, d = 5)

2.0

2.5

3.0

3.5

Parkinson’s
(n = 5,287, d = 21)

0.75

1.00

1.25

Bike Sharing
(n = 15,641, d = 16)

0.9

1.0

Protein
(n = 41,157, d = 9)

−0.50

−0.25

0.00

KEGGundir
(n = 57,247, d = 26)

SVGP
IterGP-PI

102 103

Ind. Points / Iteration

0.70

0.75

R
M

SE

102 103

Ind. Points / Iteration

2

3

4

102 103

Ind. Points / Iteration

0.4

0.6

0.8

102 103

Ind. Points / Iteration

0.55

0.60

0.65

102 103

Ind. Points / Iteration

0.15

0.20

0.25 SVGP
IterGP-PI

What about computational cost? SVGP: O(ni2) versus IterGP: O(n2i).

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 32



Training Gaussian Processes on Large-Scale Data
Kernel hyperparameter optimization with SVGP and IterGP on a problem with n ≈ 4 · 105 data points. [Wen+24, Unpublished work]

0 ms 41.7 min 1.4 h 2.1 h 2.8 h 3.5 h
Time

−0.5

0.0

0.5

1.0

N
eg

.L
og

L
ik

.(
N

L
L

)

0 ms 41.7 min 1.4 h 2.1 h 2.8 h 3.5 h
Time

10−2

10−1

100

M
ea

n
Sq

.E
rr

or
(M

SE
)

IterGP-CG SVGP

Faster large-scale Gaussian processes with better generalization!

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 33



Training Gaussian Processes on Large-Scale Data
Kernel hyperparameter optimization with SVGP and IterGP on a problem with n ≈ 4 · 105 data points. [Wen+24, Unpublished work]

0 ms 41.7 min 1.4 h 2.1 h 2.8 h 3.5 h
Time

−0.5

0.0

0.5

1.0

N
eg

.L
og

L
ik

.(
N

L
L

)

0 ms 41.7 min 1.4 h 2.1 h 2.8 h 3.5 h
Time

10−2

10−1

100

M
ea

n
Sq

.E
rr

or
(M

SE
)

IterGP-CG SVGP

Faster large-scale Gaussian processes with better generalization!

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 33



Other Applications
Extending these ideas beyond what we’ve seen.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 34



Spatiotemporal Modeling
Spatio-temporal regression of Earth surface temperature via computation-aware filtering and smoothing. [Pfö+24, Unpublished Work]

(a) Prediction (b) Uncertainty

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 35



Physics-Informed GP Regression
Learning to solve linear partial differential equations. [Pfö+23]

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 36



Generalized Linear Models
Gaussian process classification with IterGLM using two different policies. [Tat+23]

x1

x
2

True posterior mean m0,∗ m0,1 m0,10

It
er

G
L

M
-C

ho
l

m0,19

It
er

G
L

M
-C

G

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 37



Wrapping Up

Summary
I Large-scale linear systems are ubiquitous in scientific computation.

I Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Application: Gaussian Processes

I Large-scale GP models are often as much about the approximation as they are about the data.
I We can exactly quantify the error from finite data and from the approximation via a combined

uncertainty estimate. =⇒ IterGP
I Explicit trade-off between computation and uncertainty via probabilistic linear solver.

Open Research Questions / Future Directions

I Calibration.
I Policy design for downstream tasks (Active learning, Bayesian optimization, …).
I …?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 38



Wrapping Up

Summary
I Large-scale linear systems are ubiquitous in scientific computation.
I Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Application: Gaussian Processes

I Large-scale GP models are often as much about the approximation as they are about the data.
I We can exactly quantify the error from finite data and from the approximation via a combined

uncertainty estimate. =⇒ IterGP
I Explicit trade-off between computation and uncertainty via probabilistic linear solver.

Open Research Questions / Future Directions

I Calibration.
I Policy design for downstream tasks (Active learning, Bayesian optimization, …).
I …?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 38



Wrapping Up

Summary
I Large-scale linear systems are ubiquitous in scientific computation.
I Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Application: Gaussian Processes
I Large-scale GP models are often as much about the approximation as they are about the data.

I We can exactly quantify the error from finite data and from the approximation via a combined
uncertainty estimate. =⇒ IterGP

I Explicit trade-off between computation and uncertainty via probabilistic linear solver.

Open Research Questions / Future Directions

I Calibration.
I Policy design for downstream tasks (Active learning, Bayesian optimization, …).
I …?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 38



Wrapping Up

Summary
I Large-scale linear systems are ubiquitous in scientific computation.
I Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Application: Gaussian Processes
I Large-scale GP models are often as much about the approximation as they are about the data.

I We can exactly quantify the error from finite data and from the approximation via a combined
uncertainty estimate. =⇒ IterGP

I Explicit trade-off between computation and uncertainty via probabilistic linear solver.

Open Research Questions / Future Directions

I Calibration.
I Policy design for downstream tasks (Active learning, Bayesian optimization, …).
I …?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 38



Wrapping Up

Summary
I Large-scale linear systems are ubiquitous in scientific computation.
I Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Application: Gaussian Processes
I Large-scale GP models are often as much about the approximation as they are about the data.
I We can exactly quantify the error from finite data and from the approximation via a combined

uncertainty estimate. =⇒ IterGP

I Explicit trade-off between computation and uncertainty via probabilistic linear solver.

Open Research Questions / Future Directions
I Calibration.

I Policy design for downstream tasks (Active learning, Bayesian optimization, …).
I …?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 38



Wrapping Up

Summary
I Large-scale linear systems are ubiquitous in scientific computation.
I Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Application: Gaussian Processes
I Large-scale GP models are often as much about the approximation as they are about the data.
I We can exactly quantify the error from finite data and from the approximation via a combined

uncertainty estimate. =⇒ IterGP
I Explicit trade-off between computation and uncertainty via probabilistic linear solver.

Open Research Questions / Future Directions
I Calibration.
I Policy design for downstream tasks (Active learning, Bayesian optimization, …).

I …?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 38



Wrapping Up

Summary
I Large-scale linear systems are ubiquitous in scientific computation.
I Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Application: Gaussian Processes
I Large-scale GP models are often as much about the approximation as they are about the data.
I We can exactly quantify the error from finite data and from the approximation via a combined

uncertainty estimate. =⇒ IterGP
I Explicit trade-off between computation and uncertainty via probabilistic linear solver.

Open Research Questions / Future Directions
I Calibration.
I Policy design for downstream tasks (Active learning, Bayesian optimization, …).
I …?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 38



Table of Contents

1 Introduction
2 Probabilistic Linear Solvers

2.1 Derivation
2.2 Policy Choice
2.3 Prior Choice
2.4 Algorithm

3 Application: Large-Scale Gaussian Processes
3.1 Gaussian Process Inference at Scale
3.2 Quantifying Approximation Error
3.3 Algorithm: IterGP
3.4 Theoretical Analysis
3.5 Policy Choice Illustrated
3.6 Experiments

4 Summary and Extensions

5 Additional Material
5.1 Calibration
5.2 An approximation method or a better model?

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 39



Additional Material

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 40



Calibration of BayesCG
Why is uncertainty quantification sometimes conservative for probabilistic linear solvers? ToC

Observation: Uncertainty quantification of probabilistic linear solvers can be conservative!

Figure: IterGP using a (conjugate) gradient policy.

Why is that? We conditioned on αi = sT
i ri−1 = sT

i A(x∗ − xi−1).

But: We’ve “cheated” for a gradient policy, since si = b− Axi−1 = A(x∗ − xi−1) = si(x∗).

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 41



Calibration of BayesCG
Why is uncertainty quantification sometimes conservative for probabilistic linear solvers? ToC

Observation: Uncertainty quantification of probabilistic linear solvers can be conservative!

Figure: IterGP using a (conjugate) gradient policy.

Why is that? We conditioned on αi = sT
i ri−1 = sT

i A(x∗ − xi−1).

But: We’ve “cheated” for a gradient policy, since si = b− Axi−1 = A(x∗ − xi−1) = si(x∗).

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 41



Working with Infinite Data
For IterGP it does not matter how large the dataset is, or whether we have it stored on our machine. [Wen+22] ToC

Theorem (Online GP Approximation with IterGP)

Let n, n′ ∈ N and consider training data sets X ∈ Rn×d, y ∈ Rn and
X′ ∈ Rn′×d, y′ ∈ Rn′ . Consider two sequences of actions
(si)

n
i=1 ∈ Rn and (s̃i)

n+n′
i=1 ∈ Rn+n′ such that

s̃i =

(
si
0

)
(1)

Then the posterior returned by IterGP for the dataset (X, y) using
actions si is identical to the posterior returned by IterGP for the
extended dataset using actions s̃i :

ITERGP(µ, k, X, y, (si)i) = ITERGP
(
µ, k,

(
X
X′

)
,

(
y
y′
)
, (s̃i)i

)
.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 42



An Approximation Method or a Better Model?
An alternative view of IterGP as a better model for the way we do inference instead of an approximation. ToC

Observation: Only once we perform computation on data, does it enter our prediction.

→ →

The distinction between data and computation vanishes.

What if we modeled this situation with a Gaussian process?

f ∼ GP(µ, k)

ỹ | f(X) ∼ N
(
ST
i f(X), σ

2ST
i Si
)

f | X, ỹ ∼ GP(µi, ki)

IterGP’s combined posterior is equivalent to exact GP regression for linearly projected data.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 43



An Approximation Method or a Better Model?
An alternative view of IterGP as a better model for the way we do inference instead of an approximation. ToC

Observation: Only once we perform computation on data, does it enter our prediction.

→ →

The distinction between data and computation vanishes.

What if we modeled this situation with a Gaussian process?

f ∼ GP(µ, k)

ỹ | f(X) ∼ N
(
ST
i f(X), σ

2ST
i Si
)

f | X, ỹ ∼ GP(µi, ki)

IterGP’s combined posterior is equivalent to exact GP regression for linearly projected data.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 43



An Approximation Method or a Better Model?
An alternative view of IterGP as a better model for the way we do inference instead of an approximation. ToC

Observation: Only once we perform computation on data, does it enter our prediction.

→ →

The distinction between data and computation vanishes.

What if we modeled this situation with a Gaussian process?

f ∼ GP(µ, k)

ỹ | f(X) ∼ N
(
ST
i f(X), σ

2ST
i Si
)

f | X, ỹ ∼ GP(µi, ki)

IterGP’s combined posterior is equivalent to exact GP regression for linearly projected data.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 43



An Approximation Method or a Better Model?
An alternative view of IterGP as a better model for the way we do inference instead of an approximation. ToC

Observation: Only once we perform computation on data, does it enter our prediction.

→ →

The distinction between data and computation vanishes.

What if we modeled this situation with a Gaussian process?

f ∼ GP(µ, k)

ỹ | f(X) ∼ N
(
ST
i f(X), σ

2ST
i Si
)

f | X, ỹ ∼ GP(µi, ki)

IterGP’s combined posterior is equivalent to exact GP regression for linearly projected data.

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 43



References I

I E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and P. Hennig. Laplace
Redux – Effortless Bayesian Deep Learning. 2022. DOI: 10.48550/arXiv.2106.14806.
URL: http://arxiv.org/abs/2106.14806 (cit. on p. 7).

I P. Hennig, M. A. Osborne, and M. Girolami. “Probabilistic numerics and uncertainty in
computations”. In: Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences 471.2179 (2015) (cit. on pp. 9–12).

I J. Cockayne, C. J. Oates, T. J. Sullivan, and M. Girolami. “Bayesian Probabilistic Numerical
Methods”. In: SIAM Review 61.4 (2019), pp. 756–789. DOI: 10.1137/17M1139357 (cit. on
pp. 9–12).

I P. Hennig, M. A. Osborne, and H. P. Kersting. Probabilistic Numerics: Computation as
Machine Learning. CUP, 2022. ISBN: 978-1-316-68141-1. DOI: 10.1017/9781316681411
(cit. on pp. 9–12).

I P. Hennig. “Probabilistic Interpretation of Linear Solvers”. In: SIAM Journal on Optimization
25.1 (2015), pp. 234–260 (cit. on pp. 9–21).

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 44

https://doi.org/10.48550/arXiv.2106.14806
http://arxiv.org/abs/2106.14806
https://doi.org/10.1137/17M1139357
https://doi.org/10.1017/9781316681411


References II

I J. Cockayne, C. J. Oates, I. C. Ipsen, and M. Girolami. “A Bayesian Conjugate Gradient
Method (with Discussion)”. In: Bayesian Analysis 14.3 (2019), pp. 937–1012. DOI:
10.1214/19-BA1145 (cit. on pp. 9–23, 28, 30, 31).

I J. Wenger and P. Hennig. “Probabilistic Linear Solvers for Machine Learning”. In: Advances
in Neural Information Processing Systems (NeurIPS). 2020 (cit. on pp. 9–12).

I J. Wenger, G. Pleiss, M. Pförtner, P. Hennig, and J. P. Cunningham. “Posterior and
Computational Uncertainty in Gaussian Processes”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2022 (cit. on pp. 28, 48–59, 66–68, 102).

I L. N. Trefethen and D. Bau. Numerical Linear Algebra. Society for Industrial and Applied
Mathematics (SIAM), 1997 (cit. on p. 29).

I M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur. Gaussian processes and
kernel methods: A review on connections and equivalences. 2018. arXiv: 1807.02582
(cit. on pp. 66–68).

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 45

https://doi.org/10.1214/19-BA1145
https://arxiv.org/abs/1807.02582


References III

I M. Titsias. “Variational learning of inducing variables in sparse Gaussian processes”. In:
International Conference on Artificial Intelligence and Statistics (AISTATS). 2009 (cit. on
pp. 81–84).

I J. Hensman, N. Fusi, and N. D. Lawrence. “Gaussian processes for big data”. In: Conference
on Uncertainty in Artificial Intelligence (UAI). 2013 (cit. on pp. 81–84).

I M. Pförtner, I. Steinwart, P. Hennig, and J. Wenger. Physics-Informed Gaussian Process
Regression Generalizes Linear PDE Solvers. 2023. DOI: 10.48550/arXiv.2212.12474.
URL: http://arxiv.org/abs/2212.12474 (cit. on p. 89).

I L. Tatzel, J. Wenger, F. Schneider, and P. Hennig. Accelerating Generalized Linear Models by
Trading off Computation for Uncertainty. 2023. DOI: 10.48550/arXiv.2310.20285.
URL: http://arxiv.org/abs/2310.20285 (cit. on p. 90).

Probabilistic Linear Solvers — Jonathan Wenger — April 10, 2024 46

https://doi.org/10.48550/arXiv.2212.12474
http://arxiv.org/abs/2212.12474
https://doi.org/10.48550/arXiv.2310.20285
http://arxiv.org/abs/2310.20285

	Introduction
	Probabilistic Linear Solvers
	Application: Large-Scale Gaussian Processes
	Summary and Extensions
	Additional Material
	References

