Probabilistic Linear Solvers

Jonathan Wenger

COLUMBIA | Zuckerman Institute

Basic Statistics

Probabilistic / Kernel Methods
Optimization

Graphs and (Neural) Networks

Differential Equations

...and many more.

Linear Systems are Everywhere in Scientific Computing

Example: Probability theory.
Normal Distribution

$$
\begin{aligned}
x & \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
p(x) & =\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left(-\frac{1}{2}(x-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(x-\boldsymbol{\mu})\right)
\end{aligned}
$$

Gaussian Processes

$$
\begin{aligned}
f & \sim \mathcal{G} \mathcal{P}(\mu, k) \\
f \mid X, \boldsymbol{y} & \sim \mathcal{G P} \mathcal{P}\left(\mu_{\text {post }}, k_{\text {post }}\right) \\
\mu_{\text {post }}(X) & =\mu(\boldsymbol{X})+k(X, X)\left(k(X, X)+\sigma^{2} I\right)^{-1}(\boldsymbol{y}-\mu(X)) \\
k_{\text {post }}\left(x_{0}, x_{1}\right) & =k\left(x_{0}, x_{1}\right)-k\left(x_{0}, X\right)\left(k(X, X)+\sigma^{2} I\right)^{-1} k\left(X, x_{1}\right)
\end{aligned}
$$

Linear Systems are Everywhere in Scientific Computing
Example: Linear Differential Equations.

Galerkin Method

$$
{\underset{\text { linear differential equation }}{D u=f} \quad \Rightarrow \quad \underbrace{\hat{D} \hat{u}=\hat{f}}_{\text {finite dimensional linear system }}}^{\hat{D u}}
$$

Linear Systems are Everywhere in Scientific Computing

Example: Optimization.
Iterative Optimization Methods

$$
\begin{aligned}
& \boldsymbol{\theta}_{i} \approx \underset{\boldsymbol{\theta} \in \Theta}{\arg \min } \mathcal{L}(\boldsymbol{\theta}) \\
& \boldsymbol{\theta}_{i}=\boldsymbol{\theta}_{i-1}+\alpha_{i} \boldsymbol{M}_{i} d_{i}
\end{aligned}
$$

Examples: natural / conjugate / stochastic gradient descent, (Quasi-) Newton method, ...

Feedforward Neural Network

$$
\begin{aligned}
z^{0}(x, \boldsymbol{\theta}) & =x \\
z^{\ell+1}(x, \boldsymbol{\theta}) & =\sigma\left(W^{\ell} z^{\ell}+b^{\ell}\right) \\
y:=f(x, \boldsymbol{\theta}) & =z^{L}(x, \boldsymbol{\theta})
\end{aligned}
$$

Bayesian deep learning via Laplace approximation: $p(\boldsymbol{\theta} \mid \mathcal{D}) \approx \mathcal{N}\left(\boldsymbol{\theta} ; \boldsymbol{\theta}_{\mathrm{MAP}},\left(\left.\nabla_{\boldsymbol{\theta}}^{2} \mathcal{L}(\boldsymbol{\theta})\right|_{\boldsymbol{\theta}_{\mathrm{MAP}}}\right)^{-1}\right)$
(a) MAP Estimation

(b) Laplace Approximation

(c) Prediction

Daxberger et al. [Dax+22]

Probabilistic Linear Solvers

Learning the solution of a linear system.

Goal

Solve large-scale linear system $A x_{*}=b$ for $x_{*} \in \mathbb{R}^{n}$.

Goal

Solve large-scale linear system $A x_{*}=b$ for $x_{*} \in \mathbb{R}^{n}$.
Core Insights of Probabilistic Numerics

- The solution to any numerical problem is fundamentally uncertain.

Goal

Solve large-scale linear system $A x_{*}=b$ for $x_{*} \in \mathbb{R}^{n}$.
Core Insights of Probabilistic Numerics

- The solution to any numerical problem is fundamentally uncertain.
- Numerical algorithms are learning agents, which actively collect data and make predictions.

Probabilistic Linear Solvers for Machine Learning

Goal

Solve large-scale linear system $A x_{*}=b$ for $x_{*} \in \mathbb{R}^{n}$.
Core Insights of Probabilistic Numerics
[HOG15; Coc+19a; HOK22]

- The solution to any numerical problem is fundamentally uncertain.
- Numerical algorithms are learning agents, which actively collect data and make predictions.

Goal: \quad Solve $A x_{*}=b$ for x_{*}.
Prior:

$$
x_{*} \sim \mathcal{N}\left(x_{0}, \Sigma_{0}\right)
$$

* Solution \boldsymbol{x}_{*}
- Approximation \boldsymbol{x}_{i-1}

Belief $p\left(\boldsymbol{x}_{*}\right)=\mathcal{N}\left(\boldsymbol{x}_{i-1}, \boldsymbol{\Sigma}_{i-1}\right)$

Goal: \quad Solve $A x_{*}=b$ for x_{*}.
Prior:

$$
x_{*} \sim \mathcal{N}\left(x_{0}, \Sigma_{0}\right)
$$

Likelihood: Observe x_{*} via arbitrary actions s_{i} :

$$
\begin{gathered}
\alpha_{i}:=s_{i}^{\top} A\left(x_{*}-x_{i-1}\right)=s_{i}^{\top} r_{i-1} \\
p\left(\alpha_{i} \mid x_{*}\right)=\lim _{\varepsilon \rightarrow 0} \mathcal{N}\left(\alpha_{i} ; 0, \varepsilon\right)
\end{gathered}
$$

\star Solution \boldsymbol{x}_{*}

- Approximation \boldsymbol{x}_{i-1}

Belief $p\left(\boldsymbol{x}_{*}\right)=\mathcal{N}\left(\boldsymbol{x}_{i-1}, \boldsymbol{\Sigma}_{i-1}\right)$
Action \boldsymbol{s}_{i}

Goal: Solve $A x_{*}=b$ for x_{*}.
Prior:

$$
x_{*} \sim \mathcal{N}\left(x_{0}, \boldsymbol{\Sigma}_{0}\right)
$$

Likelihood: Observe x_{*} via arbitrary actions s_{i} :

$$
\begin{gathered}
\alpha_{i}:=s_{i}^{\top} A\left(x_{*}-x_{i-1}\right)=s_{i}^{\top} r_{i-1} \\
p\left(\alpha_{i} \mid x_{*}\right)=\lim _{\varepsilon \rightarrow 0} \mathcal{N}\left(\alpha_{i} ; 0, \varepsilon\right)
\end{gathered}
$$

Posterior: Bayes' rule gives a closed form update!

$\star \quad$ Solution \boldsymbol{x}_{*}

- Approximation \boldsymbol{x}_{i-1}

Belief $p\left(\boldsymbol{x}_{*}\right)=\mathcal{N}\left(\boldsymbol{x}_{i-1}, \boldsymbol{\Sigma}_{i-1}\right)$

- Action \boldsymbol{s}_{i}

Goal: \quad Solve $A x_{*}=b$ for x_{*}.
Prior: $\quad x_{*} \sim \mathcal{N}\left(x_{0}, \boldsymbol{\Sigma}_{0}\right)$
Likelihood: Observe x_{*} via arbitrary actions s_{i} :

$$
\begin{gathered}
\alpha_{i}:=s_{i}^{\top} A\left(x_{*}-x_{i-1}\right)=s_{i}^{\top} r_{i-1} \\
p\left(\alpha_{i} \mid x_{*}\right)=\lim _{\varepsilon \rightarrow 0} \mathcal{N}\left(\alpha_{i} ; 0, \varepsilon\right)
\end{gathered}
$$

Posterior: $\quad x_{*} \mid \alpha_{1}, \ldots, \alpha_{i} \sim \mathcal{N}\left(\boldsymbol{x}_{i}, \boldsymbol{\Sigma}_{i}\right)$

$$
\begin{aligned}
x_{i} & =x_{0}+\boldsymbol{\Sigma}_{0} A S_{i}\left(S_{i}^{\top} A \boldsymbol{\Sigma}_{0} A S_{i}\right)^{-1} S_{i}^{\top}\left(b-A x_{0}\right) \\
\boldsymbol{\Sigma}_{i} & =\boldsymbol{\Sigma}_{0}-\boldsymbol{\Sigma}_{0} A S_{i}\left(S_{i}^{\top} A \boldsymbol{\Sigma}_{0} A S_{i}\right)^{-1} S_{i}^{\top} A \boldsymbol{\Sigma}_{0}
\end{aligned}
$$

$\star \quad$ Solution \boldsymbol{x}_{*}

- Approximation \boldsymbol{x}_{i-1}

Belief $p\left(\boldsymbol{x}_{*}\right)=\mathcal{N}\left(\boldsymbol{x}_{i-1}, \boldsymbol{\Sigma}_{i-1}\right)$

Goal: Solve $A x_{*}=b$ for x_{*}.
Prior: $\quad x_{*} \sim \mathcal{N}\left(x_{0}, \boldsymbol{\Sigma}_{0}\right)$
Likelihood: Observe x_{*} via arbitrary actions s_{i} :

$$
\alpha_{i}:=s_{i}^{\top} A\left(x_{*}-x_{i-1}\right)=s_{i}^{\top} r_{i-1}
$$

$$
p\left(\alpha_{i} \mid x_{*}\right)=\lim _{\varepsilon \rightarrow 0} \mathcal{N}\left(\alpha_{i} ; 0, \varepsilon\right)
$$

Posterior: $\quad x_{*} \mid \alpha_{1}, \ldots, \alpha_{i} \sim \mathcal{N}\left(x_{i}, \boldsymbol{\Sigma}_{i}\right)$

$$
\begin{aligned}
x_{i} & =x_{0}+\boldsymbol{\Sigma}_{0} A S_{i}\left(S_{i}^{\top} A \boldsymbol{\Sigma}_{0} A S_{i}\right)^{-1} S_{i}^{\top}\left(b-A x_{0}\right) \\
\boldsymbol{\Sigma}_{i} & =\boldsymbol{\Sigma}_{0}-\boldsymbol{\Sigma}_{0} A S_{i}\left(S_{i}^{\top} A \boldsymbol{\Sigma}_{0} A S_{i}\right)^{-1} S_{i}^{\top} A \boldsymbol{\Sigma}_{0}
\end{aligned}
$$

\star Solution \boldsymbol{x}_{*}

- Approximation \boldsymbol{x}_{i-1}

Belief $p\left(\boldsymbol{x}_{*}\right)=\mathcal{N}\left(\boldsymbol{x}_{i-1}, \boldsymbol{\Sigma}_{i-1}\right)$
Action \boldsymbol{s}_{i}

Goal: \quad Solve $A x_{*}=b$ for x_{*}.
Prior: $\quad x_{*} \sim \mathcal{N}\left(x_{0}, \boldsymbol{\Sigma}_{0}\right)$
Likelihood: Observe x_{*} via arbitrary actions s_{i} :

$$
\begin{gathered}
\alpha_{i}:=s_{i}^{\top} A\left(x_{*}-x_{i-1}\right)=s_{i}^{\top} r_{i-1} \\
p\left(\alpha_{i} \mid x_{*}\right)=\lim _{\varepsilon \rightarrow 0} \mathcal{N}\left(\alpha_{i} ; 0, \varepsilon\right)
\end{gathered}
$$

Posterior: $\quad x_{*} \mid \alpha_{1}, \ldots, \alpha_{i} \sim \mathcal{N}\left(x_{i}, \boldsymbol{\Sigma}_{i}\right)$

$$
\begin{aligned}
x_{i} & =x_{0}+\boldsymbol{\Sigma}_{0} A S_{i}\left(S_{i}^{\top} A \boldsymbol{\Sigma}_{0} A S_{i}\right)^{-1} S_{i}^{\top}\left(b-A x_{0}\right) \\
\boldsymbol{\Sigma}_{i} & =\boldsymbol{\Sigma}_{0}-\boldsymbol{\Sigma}_{0} A S_{i}\left(S_{i}^{\top} A \boldsymbol{\Sigma}_{0} A S_{i}\right)^{-1} S_{i}^{\top} A \boldsymbol{\Sigma}_{0}
\end{aligned}
$$

\star Solution \boldsymbol{x}_{*}

- Approximation \boldsymbol{x}_{i-1}

Belief $p\left(\boldsymbol{x}_{*}\right)=\mathcal{N}\left(\boldsymbol{x}_{i-1}, \boldsymbol{\Sigma}_{i-1}\right)$

Goal: Solve $A x_{*}=b$ for x_{*}.
Prior: $\quad x_{*} \sim \mathcal{N}\left(x_{0}, \boldsymbol{\Sigma}_{0}\right)$
Likelihood: Observe x_{*} via arbitrary actions s_{i} :

$$
\alpha_{i}:=s_{i}^{\top} A\left(x_{*}-x_{i-1}\right)=s_{i}^{\top} r_{i-1}
$$

$$
p\left(\alpha_{i} \mid x_{*}\right)=\lim _{\varepsilon \rightarrow 0} \mathcal{N}\left(\alpha_{i} ; 0, \varepsilon\right)
$$

Posterior: $\quad x_{*} \mid \alpha_{1}, \ldots, \alpha_{i} \sim \mathcal{N}\left(x_{i}, \boldsymbol{\Sigma}_{i}\right)$

$$
\begin{aligned}
x_{i} & =x_{0}+\boldsymbol{\Sigma}_{0} A S_{i}\left(S_{i}^{\top} A \boldsymbol{\Sigma}_{0} A S_{i}\right)^{-1} S_{i}^{\top}\left(b-A x_{0}\right) \\
\boldsymbol{\Sigma}_{i} & =\boldsymbol{\Sigma}_{0}-\boldsymbol{\Sigma}_{0} A S_{i}\left(S_{i}^{\top} A \boldsymbol{\Sigma}_{0} A S_{i}\right)^{-1} S_{i}^{\top} A \boldsymbol{\Sigma}_{0}
\end{aligned}
$$

$\star \quad$ Solution \boldsymbol{x}_{*}

- Approximation \boldsymbol{x}_{i-1}

Belief $p\left(\boldsymbol{x}_{*}\right)=\mathcal{N}\left(\boldsymbol{x}_{i-1}, \boldsymbol{\Sigma}_{i-1}\right)$

- Action \boldsymbol{s}_{i}

Goal: \quad Solve $A x_{*}=b$ for x_{*}.
Prior: $\quad x_{*} \sim \mathcal{N}\left(x_{0}, \boldsymbol{\Sigma}_{0}\right)$
Likelihood: Observe x_{*} via arbitrary actions s_{i} :

$$
\begin{gathered}
\alpha_{i}:=s_{i}^{\top} A\left(x_{*}-x_{i-1}\right)=s_{i}^{\top} r_{i-1} \\
p\left(\alpha_{i} \mid x_{*}\right)=\lim _{\varepsilon \rightarrow 0} \mathcal{N}\left(\alpha_{i} ; 0, \varepsilon\right)
\end{gathered}
$$

Posterior: $\quad x_{*} \mid \alpha_{1}, \ldots, \alpha_{i} \sim \mathcal{N}\left(x_{i}, \boldsymbol{\Sigma}_{i}\right)$

$$
\begin{aligned}
x_{i} & =x_{0}+\boldsymbol{\Sigma}_{0} A S_{i}\left(S_{i}^{\top} A \boldsymbol{\Sigma}_{0} A S_{i}\right)^{-1} S_{i}^{\top}\left(b-A x_{0}\right) \\
\boldsymbol{\Sigma}_{i} & =\boldsymbol{\Sigma}_{0}-\boldsymbol{\Sigma}_{0} A S_{i}\left(S_{i}^{\top} A \boldsymbol{\Sigma}_{0} A S_{i}\right)^{-1} S_{i}^{\top} A \boldsymbol{\Sigma}_{0}
\end{aligned}
$$

\star Solution \boldsymbol{x}_{*}

- Approximation \boldsymbol{x}_{i-1}

Belief $p\left(\boldsymbol{x}_{*}\right)=\mathcal{N}\left(\boldsymbol{x}_{i-1}, \boldsymbol{\Sigma}_{i-1}\right)$

Goal: Solve $A x_{*}=b$ for x_{*}.
Prior: $\quad x_{*} \sim \mathcal{N}\left(x_{0}, \boldsymbol{\Sigma}_{0}\right)$
Likelihood: Observe x_{*} via arbitrary actions s_{i} :

$$
\begin{gathered}
\alpha_{i}:=s_{i}^{\top} A\left(x_{*}-x_{i-1}\right)=s_{i}^{\top} r_{i-1} \\
p\left(\alpha_{i} \mid x_{*}\right)=\lim _{\varepsilon \rightarrow 0} \mathcal{N}\left(\alpha_{i} ; 0, \varepsilon\right)
\end{gathered}
$$

Posterior: $\quad x_{*} \mid \alpha_{1}, \ldots, \alpha_{i} \sim \mathcal{N}\left(x_{i}, \boldsymbol{\Sigma}_{i}\right)$

$$
\begin{aligned}
x_{i} & =x_{0}+\boldsymbol{\Sigma}_{0} A S_{i}\left(S_{i}^{\top} A \boldsymbol{\Sigma}_{0} A S_{i}\right)^{-1} S_{i}^{\top}\left(b-A x_{0}\right) \\
\boldsymbol{\Sigma}_{i} & =\boldsymbol{\Sigma}_{0}-\boldsymbol{\Sigma}_{0} A S_{i}\left(S_{i}^{\top} A \boldsymbol{\Sigma}_{0} A S_{i}\right)^{-1} S_{i}^{\top} A \boldsymbol{\Sigma}_{0}
\end{aligned}
$$

$\star \quad$ Solution \boldsymbol{x}_{*}

- Approximation \boldsymbol{x}_{i-1}

Belief $p\left(\boldsymbol{x}_{*}\right)=\mathcal{N}\left(\boldsymbol{x}_{i-1}, \boldsymbol{\Sigma}_{i-1}\right)$

How do we choose the linear solver actions S and the prior $\mathcal{N}\left(x_{0}, \boldsymbol{\Sigma}_{0}\right)$?

Observation: Actions "weigh" entries in the residual: $\alpha_{i}:=s_{i}^{\top} r_{i-1}=s_{i}^{\top} A\left(x_{*}-x_{i-1}\right)$

Observation: Actions "weigh" entries in the residual: $\alpha_{i}:=s_{i}^{\top} r_{i-1}=s_{i}^{\top} A\left(x_{*}-x_{i-1}\right)$
Idea: \quad Focus computation where residual is large: $s_{i}=r_{i-1} \Rightarrow \alpha_{i}=\left\|r_{i-1}\right\|_{2}^{2}$
\Rightarrow BayesCG [Coc+19b]

Interlude: Method of Conjugate Gradients

Efficiently solving linear systems with positive definite system matrix via matrix-vector multiplies.

Goal: Approximately solve linear system $A x_{*}=b$.
Idea: Rephrase as quadratic optimization problem and optimize. Let

$$
f(x)=\frac{1}{2} x^{\top} A x-b^{\top} x
$$

then $\nabla f\left(\boldsymbol{x}_{*}\right)=\mathbf{0} \Longleftrightarrow A x_{*}=b \Longleftrightarrow r\left(\boldsymbol{x}_{*}\right):=b-A \boldsymbol{x}_{*}=\mathbf{0}$.
Question: How should we optimize?

Oleg Alexandrov, commons.wikimedia.org/w/index.php?curid=2267598

Interlude: Method of Conjugate Gradients

Efficiently solving linear systems with positive definite system matrix via matrix-vector multiplies.

Goal: Approximately solve linear system $A x_{*}=b$.
Idea: Rephrase as quadratic optimization problem and optimize. Let

$$
f(x)=\frac{1}{2} x^{\top} A x-b^{\top} x
$$

then $\nabla f\left(\boldsymbol{x}_{*}\right)=\mathbf{0} \Longleftrightarrow A x_{*}=b \Longleftrightarrow r\left(\boldsymbol{x}_{*}\right):=b-A \boldsymbol{x}_{*}=\mathbf{0}$.
Question: How should we optimize?
1 Gradient descent: Follow $d_{i}=r\left(x_{i}\right)=-\nabla f\left(x_{i}\right)$ s.t. $\left\langle d_{i}, d_{j}\right\rangle=0$.

Oleg Alexandrov, commons.wikimedia.org/w/index.php?curid=2267598

Interlude: Method of Conjugate Gradients

Efficiently solving linear systems with positive definite system matrix via matrix-vector multiplies.

Goal: Approximately solve linear system $A x_{*}=b$.
Idea: Rephrase as quadratic optimization problem and optimize. Let

$$
f(x)=\frac{1}{2} x^{\top} A x-b^{\top} x
$$

then $\nabla f\left(\boldsymbol{x}_{*}\right)=\mathbf{0} \Longleftrightarrow A x_{*}=b \Longleftrightarrow r\left(\boldsymbol{x}_{*}\right):=b-A \boldsymbol{x}_{*}=\mathbf{0}$.
Question: How should we optimize?
1 Gradient descent: Follow $d_{i}=r\left(x_{i}\right)=-\nabla f\left(x_{i}\right)$ s.t. $\left\langle d_{i}, d_{j}\right\rangle=0$.
2 Conjugate direction method: Follow d_{i} s. t. $\left\langle d_{i}^{\top} d_{j}\right\rangle_{A}=d_{i}^{\top} A d_{j}=0$ for $i \neq j$. \Rightarrow convergence in at most n steps.

Interlude: Method of Conjugate Gradients

Efficiently solving linear systems with positive definite system matrix via matrix-vector multiplies.

Goal: Approximately solve linear system $A x_{*}=b$.
Idea: Rephrase as quadratic optimization problem and optimize. Let

$$
f(x)=\frac{1}{2} x^{\top} A x-b^{\top} x
$$

then $\nabla f\left(\boldsymbol{x}_{*}\right)=\mathbf{0} \Longleftrightarrow A x_{*}=b \Longleftrightarrow r\left(\boldsymbol{x}_{*}\right):=b-A \boldsymbol{x}_{*}=\mathbf{0}$.
Question: How should we optimize?
1 Gradient descent: Follow $d_{i}=r\left(x_{i}\right)=-\nabla f\left(x_{i}\right)$ s.t. $\left\langle d_{i}, d_{j}\right\rangle=0$.
2 Conjugate direction method: Follow d_{i} s. t. $\left\langle d_{i}^{\top} d_{j}\right\rangle_{A}=d_{i}^{\top} A d_{j}=0$ for $i \neq j$. \Rightarrow convergence in at most n steps.

First step $d_{0}=r\left(x_{0}\right)$.

Oleg Alexandrov, commons.wikimedia.org/w/index.php?curid=2267598

Observation: Actions S_{i} "weigh" entries in the residual: $\alpha_{i}:=s_{i}^{\top} r_{i-1}=s_{i}^{\top} A\left(x_{*}-x_{i-1}\right)$
Idea: \quad Focus computation where residual is large: $s_{i}=r_{i-1} \Rightarrow \alpha_{i}=\left\|r_{i-1}\right\|_{2}^{2}$
\Rightarrow BayesCG [Coc+19b]
Theorem (Equivalence to Conjugate Gradient Method [Coc+19b; Wen+22])
If $x_{0}=\mathbf{0}, \boldsymbol{\Sigma}_{0}=A^{-1}$ and the actions are either conjugate gradients $s_{i}=d_{i}^{C G}$ or gradients $s_{i}=r_{i-1}$, then the posterior mean $x_{i}=x_{i}^{\subset G}$ of BayesCG is equivalent to the approximation returned by CG.

Convergence Behavior of the Conjugate Gradient Method

Theorem (Convergence Rate of CG[TB97])

$$
\left\|x-x_{i}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa(A)-1}}{\sqrt{\kappa(A)+1}}\right)^{i}\left\|x-x_{0}\right\|_{A}
$$

CG converges fast for a small condition number.

Prior Choice

Comparing different choices of prior for BayesCG.

Prior

$$
x_{*} \sim \mathcal{N}\left(x_{0}, \Sigma_{0}\right)
$$

Prior Choice

Prior

$$
x_{*} \sim \mathcal{N}\left(x_{0}, \boldsymbol{\Sigma}_{0}\right)
$$

$$
\Rightarrow
$$

BCG, $\Sigma_{0}=\left(P^{\top} P\right)^{-1}$

Algorithm: Probabilistic Linear Solver

```
Sequential formulation.
```

1 procedure ProbabilisticLinearSolver $\left(A, b, x_{0}=\mathbf{0}, \boldsymbol{\Sigma}_{0}\right)$			Time	Space
2	while not StoppingCriterion() do			
3	$s_{i} \leftarrow$ Policy ()	Select action via policy.		
4	$r_{i-1} \leftarrow b-A x_{i-1}$	Residual.	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}(\mathrm{n})$
5	$\alpha_{i} \leftarrow s_{i}^{\top} r_{i-1}$	Observation.	$\mathcal{O}(n)$	$\mathcal{O}(1)$
6	$z_{i} \leftarrow A s_{i}$		$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}(n)$
7	$d_{i} \leftarrow \Sigma_{i-1} A s_{i}=\boldsymbol{\Sigma}_{i-1} z_{i}$	Search direction.	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}(n)$
8	$\eta_{i} \leftarrow s_{i}^{\top} A \Sigma_{i-1} A s_{i}=z_{i}^{\top} d_{i}$		$\mathcal{O}(n)$	$\mathcal{O}(1)$
9	$C_{i} \leftarrow C_{i-1}+\frac{1}{n_{i}} d_{d} d_{i}^{\top}$		$\mathcal{O}(n)$	$\mathcal{O}($ ni)
10	$\chi_{i} \leftarrow x_{i-1}+\frac{\alpha_{i}}{\eta_{i}} d_{i}$	Solution estimate.	$\mathcal{O}(n)$	$\mathcal{O}(\mathrm{n})$
11	$\boldsymbol{\Sigma}_{i} \leftarrow \boldsymbol{\Sigma}_{0}-C_{i}$	Uncertainty.		
12	return $\mathcal{N}\left(\mathrm{x}_{i}, \boldsymbol{\Sigma}_{i}\right)$			

Application: Gaussian Processes

Scaling Gaussian processes via probabilistic linear solvers.

Gaussian Process Regression

Goal:
Supervised learning from n data points (X, y)
Prior: $\quad \quad \quad$ Gaussian process $f \sim \mathcal{G} \mathcal{P}(\mu, k)$
Likelihood: Observations $\boldsymbol{y}=f(X)+\varepsilon \sim \mathcal{N}\left(f(X), \sigma^{2} I\right)$
Posterior: $\quad f \mid X, y \sim \mathcal{G} \mathcal{P}\left(\mu_{*}, k_{*}\right)$ with

$$
\begin{aligned}
\mu_{*}(\cdot) & =\mu(\cdot)+K(\cdot, X) \hat{K}^{-1}(y-\mu(X)) \\
K_{*}(\cdot, \cdot) & =K(\cdot, \cdot)-K(\cdot, X) \hat{K}^{-1} K(X, \cdot)
\end{aligned}
$$

where $\hat{K}=K+\sigma^{2} I \in \mathbb{R}^{n \times n}$.

Gaussian Process Regression

Goal: \quad Supervised learning from n data points (X, y)
Prior: $\quad \quad \quad$ Gaussian process $f \sim \mathcal{G} \mathcal{P}(\mu, k)$
Likelihood: Observations $\boldsymbol{y}=f(X)+\varepsilon \sim \mathcal{N}\left(f(X), \sigma^{2} I\right)$
Posterior: $\quad f \mid X, y \sim \mathcal{G P}\left(\mu_{*}, k_{*}\right)$ with

$$
\begin{aligned}
\mu_{*}(\cdot) & =\mu(\cdot)+K(\cdot, \boldsymbol{X}) \hat{K}^{-1}(\boldsymbol{y}-\mu(X)) \\
K_{*}(\cdot, \cdot) & =K(\cdot, \cdot)-K(\cdot, X) \hat{K}^{-1} K(X, \cdot)
\end{aligned}
$$

where $\hat{K}=K+\sigma^{2} I \in \mathbb{R}^{n \times n}$.

Computational Cost of Gaussian Processes

Space: $\mathcal{O}\left(n^{2}\right)$

Computational Cost of Gaussian Processes

Space: $\mathcal{O}\left(n^{2}\right)$

Approximate Gaussian Process Inference

Approximate Gaussian Process Inference

- Data —— Approx. Posterior Mean \square Approx. Posterior Uncertainty

Approximations introduce error, which impacts downstream decisions.

Question 1:

Question 1:

 How can we perform Gaussian process inference at scale?Question 2:
How can we quantify the inevitable approximation error?

Q1: Gaussian Process Inference at Scale?
Efficiently approximating the posterior of a Gaussian process.

Representer Weights

$$
\begin{gathered}
f \mid \boldsymbol{X}, \boldsymbol{y} \sim \mathcal{G} \mathcal{P}\left(\mu_{*}, k_{*}\right) \\
\mu_{*}(\cdot)=\mu(\cdot)+k(\cdot, X) \underbrace{\hat{K}^{-1}(\boldsymbol{y}-\mu(X))}_{\text {representer weights } v_{*}}=\mu(\cdot)+\sum_{j=1}^{n} k\left(\cdot, x_{j}\right)\left(v_{*}\right)_{j}
\end{gathered}
$$

Approximating Representer Weights

$$
\mu_{*}(\cdot)=\mu(\cdot)+k(\cdot, \boldsymbol{X}) \underbrace{\hat{K}^{-1}(\boldsymbol{y}-\mu(\boldsymbol{X}))}_{\text {representer weights } \boldsymbol{v}_{*}} \approx \mu(\cdot)+k(\cdot, \boldsymbol{X}) \boldsymbol{v}_{i}
$$

Known: Can use iterative linear solvers (e.g. CG) to approximate representer weights $v_{*} \approx v_{i}$.

Approximating Representer Weights

$$
\mu_{*}(\cdot)=\mu(\cdot)+k(\cdot, \boldsymbol{X}) \underbrace{\hat{K}^{-1}(\boldsymbol{y}-\mu(\boldsymbol{X}))}_{\text {representer weights } \boldsymbol{v}_{*}} \approx \mu(\cdot)+k(\cdot, \boldsymbol{X}) \boldsymbol{v}_{i}
$$

Known: Can use iterative linear solvers (e.g. CG) to approximate representer weights $\boldsymbol{v}_{*} \approx v_{i}$.

Benefit: Time complexity $\mathcal{O}\left(n^{2}\right)$ and space complexity $\mathcal{O}(n d)$.

Approximating Representer Weights

$$
\mu_{*}(\cdot)=\mu(\cdot)+k(\cdot, \boldsymbol{X}) \underbrace{\hat{K}^{-1}(\boldsymbol{y}-\mu(\boldsymbol{X}))}_{\text {representer weights } \boldsymbol{v}_{*}} \approx \mu(\cdot)+k(\cdot, \boldsymbol{X}) \boldsymbol{v}_{i}
$$

Known: Can use iterative linear solvers (e.g. CG) to approximate representer weights $\boldsymbol{v}_{*} \approx v_{i}$.

Problem: Approximation error of the linear solve.

Q2: Can We Quantify Approximation Error?

Probabilistic error quantification at prediction time using probabilistic linear solvers.

Observation:

GP prior induces representer weights prior:

$$
y-\boldsymbol{\mu} \sim \mathcal{N}(0, \hat{K})
$$

$\star \quad$ Solution \boldsymbol{x}_{*}

- Approximation \boldsymbol{x}_{i}

Belief $p\left(\boldsymbol{x}_{*}\right)$

Observation:

GP prior induces representer weights prior:

$$
\begin{gathered}
y-\mu \sim \mathcal{N}(0, \hat{K}) \\
\Rightarrow v_{*}=\hat{K}^{-1}(y-\mu) \sim \mathcal{N}\left(\underset{=v_{0}}{0}, \underset{=\boldsymbol{\Sigma}_{0}}{\hat{K}^{-1}}\right)
\end{gathered}
$$

t \quad Solution \boldsymbol{x}_{*}

- Approximation \boldsymbol{x}_{i}

Belief $p\left(\boldsymbol{x}_{*}\right)$

Representer weights posterior $\boldsymbol{v}_{*} \sim \mathcal{N}\left(\boldsymbol{v}_{i}, \boldsymbol{\Sigma}_{i}\right)$, s.t.

$$
\begin{aligned}
v_{i} & =C_{i}(\boldsymbol{y}-\boldsymbol{\mu}) \\
\boldsymbol{\Sigma}_{i} & =\hat{K}^{-1}-C_{i}
\end{aligned}
$$

Solution \boldsymbol{x}_{*}
Approximation \boldsymbol{x}_{i}
Belief $p\left(\boldsymbol{x}_{*}\right)$

Representer weights posterior $v_{*} \sim \mathcal{N}\left(v_{i}, \boldsymbol{\Sigma}_{i}\right)$, s.t.

$$
\begin{aligned}
v_{i} & =C_{i}(\boldsymbol{y}-\boldsymbol{\mu}) \\
\boldsymbol{\Sigma}_{i} & =\hat{K}^{-1}-C_{i}
\end{aligned}
$$

$\begin{array}{cl}\text { Solution } \boldsymbol{x}_{*} \\ & \text { Approximation } \boldsymbol{x}_{i} \\ \text { Belief } p\left(\boldsymbol{x}_{*}\right)\end{array}$
Chicken \& Egg Problem: How can we get a probabilistic error estimate for $v_{i} \approx v_{*}$, if we need \hat{K}^{-1} ?

IterGP: Computation-Aware Gaussian Process Inference

Quantifying uncertainty arising from observing finite data and performing a finite amount of computation.
Goal: Approximate the Gaussian process posterior $f \mid \boldsymbol{y} \sim \mathcal{G} \mathcal{P}\left(\mu_{*}, k_{*}\right)$.

Goal: Approximate the Gaussian process posterior $f \mid y \sim \mathcal{G} \mathcal{P}\left(\mu_{*}, k_{*}\right)$.
Obtained: Belief about representer weights $\boldsymbol{v}_{*}=\hat{K}^{-1}(\boldsymbol{y}-\boldsymbol{\mu}) \sim \mathcal{N}\left(\boldsymbol{v}_{i}, \boldsymbol{\Sigma}_{i}\right)=\mathcal{N}\left(v_{i}, \hat{K}^{-1}-C_{i}\right)$

Goal: Approximate the Gaussian process posterior $f \mid y \sim \mathcal{G} \mathcal{P}\left(\mu_{*}, k_{*}\right)$.
Obtained: Belief about representer weights $\boldsymbol{v}_{*}=\hat{K}^{-1}(\boldsymbol{y}-\boldsymbol{\mu}) \sim \mathcal{N}\left(\boldsymbol{v}_{i}, \boldsymbol{\Sigma}_{i}\right)=\mathcal{N}\left(v_{i}, \hat{K}^{-1}-C_{i}\right)$
Idea: Propagate uncertainty about representer weights to posterior.

Goal: Approximate the Gaussian process posterior $f \mid y \sim \mathcal{G} \mathcal{P}\left(\mu_{*}, k_{*}\right)$.
Obtained: Belief about representer weights $\boldsymbol{v}_{*}=\hat{K}^{-1}(\boldsymbol{y}-\boldsymbol{\mu}) \sim \mathcal{N}\left(\boldsymbol{v}_{i}, \boldsymbol{\Sigma}_{i}\right)=\mathcal{N}\left(v_{i}, \hat{K}^{-1}-C_{i}\right)$
Idea: Propagate uncertainty about representer weights to posterior.
1 Pathwise form of posterior: $(f \mid \boldsymbol{y})(\cdot) \stackrel{d}{=} f(\cdot)+k(\cdot, X) \underset{=v_{*}}{\hat{K}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})} \stackrel{d}{=}\left(f \mid v_{*}\right)(\cdot)$

Goal: Approximate the Gaussian process posterior $f \mid y \sim \mathcal{G} \mathcal{P}\left(\mu_{*}, k_{*}\right)$.
Obtained: Belief about representer weights $\boldsymbol{v}_{*}=\hat{K}^{-1}(\boldsymbol{y}-\boldsymbol{\mu}) \sim \mathcal{N}\left(\boldsymbol{v}_{i}, \boldsymbol{\Sigma}_{i}\right)=\mathcal{N}\left(v_{i}, \hat{K}^{-1}-C_{i}\right)$
Idea: Propagate uncertainty about representer weights to posterior.
1 Pathwise form of posterior: $(f \mid \boldsymbol{y})(\cdot) \stackrel{d}{=} f(\cdot)+k(\cdot, X) \underset{=v_{*}}{\hat{K}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})} \stackrel{d}{=}\left(f \mid v_{*}\right)(\cdot)$

Goal: Approximate the Gaussian process posterior $f \mid y \sim \mathcal{G} \mathcal{P}\left(\mu_{*}, k_{*}\right)$.
Obtained: Belief about representer weights $\boldsymbol{v}_{*}=\hat{K}^{-1}(\boldsymbol{y}-\boldsymbol{\mu}) \sim \mathcal{N}\left(\boldsymbol{v}_{i}, \boldsymbol{\Sigma}_{i}\right)=\mathcal{N}\left(v_{i}, \hat{K}^{-1}-C_{i}\right)$
Idea: Propagate uncertainty about representer weights to posterior.
1 Pathwise form of posterior: $(f \mid y)(\cdot) \stackrel{d}{=} f(\cdot)+k(\cdot, X) \underbrace{\hat{K}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})}_{=v_{*}} \stackrel{d}{(}\left(f \mid \boldsymbol{v}_{*}\right)(\cdot)$
2 Marginalize representer weights belief: $p(f(\cdot))=\int p\left(f(\cdot) \mid v_{*}\right) p\left(v_{*}\right) d v_{*}=\mathcal{G} \mathcal{P}\left(f ; \mu_{i}, k_{i}\right)$

Goal: Approximate the Gaussian process posterior $f \mid y \sim \mathcal{G} \mathcal{P}\left(\mu_{*}, k_{*}\right)$.
Obtained: Belief about representer weights $\boldsymbol{v}_{*}=\hat{K}^{-1}(\boldsymbol{y}-\boldsymbol{\mu}) \sim \mathcal{N}\left(\boldsymbol{v}_{i}, \boldsymbol{\Sigma}_{i}\right)=\mathcal{N}\left(v_{i}, \hat{K}^{-1}-C_{i}\right)$

Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: $(f \mid y)(\cdot) \stackrel{d}{=} f(\cdot)+k(\cdot, X) \underbrace{\hat{K}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})}_{=v_{*}} \stackrel{d}{(}\left(f \mid \boldsymbol{v}_{*}\right)(\cdot)$
2 Marginalize representer weights belief: $p(f(\cdot))=\int p\left(f(\cdot) \mid v_{*}\right) p\left(v_{*}\right) d v_{*}=\mathcal{G} \mathcal{P}\left(f ; \mu_{i}, k_{i}\right)$

$$
\mu_{i}(\cdot)=\mu(\cdot)+K(\cdot, X) v_{i}
$$

Goal: Approximate the Gaussian process posterior $f \mid y \sim \mathcal{G} \mathcal{P}\left(\mu_{*}, k_{*}\right)$.
Obtained: Belief about representer weights $\boldsymbol{v}_{*}=\hat{K}^{-1}(\boldsymbol{y}-\boldsymbol{\mu}) \sim \mathcal{N}\left(\boldsymbol{v}_{i}, \boldsymbol{\Sigma}_{i}\right)=\mathcal{N}\left(v_{i}, \hat{K}^{-1}-C_{i}\right)$

Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: $(f \mid y)(\cdot) \stackrel{d}{=} f(\cdot)+k(\cdot, X) \underbrace{\hat{K}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})}_{=v_{*}} \stackrel{d}{(}\left(f \mid \boldsymbol{v}_{*}\right)(\cdot)$
2 Marginalize representer weights belief: $p(f(\cdot))=\int p\left(f(\cdot) \mid v_{*}\right) p\left(v_{*}\right) d v_{*}=\mathcal{G} \mathcal{P}\left(f ; \mu_{i}, k_{i}\right)$

$$
\begin{aligned}
& \mu_{i}(\cdot)=\mu(\cdot)+K(\cdot, X) \boldsymbol{v}_{i}
\end{aligned}
$$

Computation-Aware GP Inference Illustrated

Interpreting computational and combined uncertainty as error quantification.

Computation-Aware GP Inference Illustrated

Interpreting computational and combined uncertainty as error quantification.

Computation-Aware GP Inference Illustrated

Interpreting computational and combined uncertainty as error quantification.

Computation-Aware GP Inference Illustrated

Interpreting computational and combined uncertainty as error quantification.

Computation-Aware GP Inference Illustrated

Interpreting computational and combined uncertainty as error quantification.

Algorithm: IterGP

1 procedure $\operatorname{ITERGP}\left(\mu, K, X, y, C_{0}=\mathbf{0}\right)$			Time	Space
2	while not StoppingCriterion() do			
3	$s_{i} \leftarrow \operatorname{Policy}()$	Select action via policy.		
4	$r_{i-1} \leftarrow(\boldsymbol{y}-\boldsymbol{\mu})-\hat{K} v_{i-1}$	Residual.	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}(n)$
5	$\alpha_{i} \leftarrow s_{i}^{\top} r_{i-1}$	Observation.	$\mathcal{O}(n)$	$\mathcal{O}(1)$
6	$z_{i} \leftarrow \hat{K} s_{i}$		$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}(n)$
7	$d_{i} \leftarrow \Sigma_{i-1} \hat{K} s_{i}=s_{i}-C_{i-1} z_{i}$	Search direction.	$\mathcal{O}(n i)$	$\mathcal{O}(n)$
8	$\eta_{i} \leftarrow s_{i}^{\top} \hat{K} \Sigma_{i-1} \hat{K} s_{i}=z_{i}^{\top} \boldsymbol{d}_{i}$		$\mathcal{O}(n)$	$\mathcal{O}(1)$
9	$C_{i} \leftarrow C_{i-1}+\frac{1}{\eta_{i}} d_{i} d_{i}^{\top}$	Precision matrix approx. $C_{i} \approx \hat{K}^{-1}$.	$\mathcal{O}(n)$	$\mathcal{O}(n i)$
10	$v_{i} \leftarrow v_{i-1}+\frac{\alpha_{i}}{\eta_{i}} d_{i}$	Representer weights estimate.	$\mathcal{O}(n)$	$\mathcal{O}(n)$
11	$\Sigma_{i} \leftarrow \Sigma_{0}-C_{i}$	Representer weights uncertainty.		
12	$\mu_{i}(\cdot) \leftarrow \mu(\cdot)+K(\cdot, X) v_{i}$	Approximate posterior mean.	$\mathcal{O}\left(n_{\diamond} n\right)$	$\mathcal{O}\left(n_{\diamond}\right)$
13	$K_{i}(\cdot, \cdot) \leftarrow K(\cdot, \cdot)-K(\cdot, X) C_{i} K(X, \cdot)$	Combined covariance function.	$\mathcal{O}\left(n_{\diamond} n i\right)$	$\mathcal{O}\left(n_{\diamond}^{2}\right)$
14	return $\mathcal{G P}\left(\mu_{i}, K_{i}\right)$			

Theoretical Analysis

Uncertainty as a tight bound on the relative error.

Theorem (Kanagawa et al. [Kan+18])

$$
\sup _{g \in \mathcal{H}_{k^{\sigma}}:\|g\|_{\mathcal{H}_{k} \sigma} \leq 1} \underbrace{g(x)-\mu_{*}^{g}(x)}_{\text {error of math. post. mean } ○}=\sup _{g \in \mathcal{H}_{k} \sigma} \frac{\left|g(x)-\mu_{*}^{g}(x)\right|}{\|g\|_{\mathcal{H}_{k^{\sigma}}}}=\sqrt{k_{*}(x, x)+\sigma^{2}}
$$

Theoretical Analysis

Theorem (Kanagawa et al. [Kan+18])

$$
\sup _{g \in \mathcal{H}_{k^{\sigma}}:\|g\| \|_{\mathcal{H}_{k} \sigma} \leq 1} \underbrace{g(x)-\mu_{*}^{g}(x)}_{\text {error of math. post. mean } O}=\sup _{g \in \mathcal{H}_{\mathcal{H}^{\sigma}}} \frac{\left|g(x)-\mu_{*}^{g}(x)\right|}{\|g\|_{\mathcal{H}_{k} \sigma}}=\sqrt{k_{*}(x, x)+\sigma^{2}}
$$

Theorem (Wenger et al. [Wen+22])

$$
\sup _{g \in \mathcal{H}_{k} \sigma:\|g\|_{\mathcal{H}_{k} \sigma} \leq 1} \stackrel{\text { error of approximate posterior mean } \bigcirc+\bigcirc}{\underbrace{g(x)-\mu_{*}^{g}(x)}_{\text {error of math. post. mean } \bigcirc}+\underbrace{\mu_{*}^{g}(x)-\mu_{i}^{g}(x)}_{\text {computational error } \bigcirc}}=\sqrt{k_{i}(x, x)+\sigma^{2}}
$$

Theorem (Kanagawa et al. [Kan+18])

$$
\sup _{g \in \mathcal{H}_{k} \sigma:\|g\| \|_{\mathcal{H}_{k} \sigma} \leq 1} \underbrace{g(x)-\mu_{*}^{g}(x)}_{\text {error of math. post. mean } O}=\sup _{g \in \mathcal{H}_{k} \sigma} \frac{\left|g(x)-\mu_{*}^{g}(x)\right|}{\|g\|_{\mathcal{H}_{k} \sigma}}=\sqrt{k_{*}(x, x)+\sigma^{2}}
$$

Theorem (Wenger et al. [Wen+22])

$$
\sup _{g \in \mathcal{H}_{k} \sigma:\|g\|_{\mathcal{H}_{k} \sigma} \leq 1} \stackrel{\text { error of approximate posterior mean } \bigcirc+\bigcirc}{\underbrace{g(x)-\mu_{*}^{g}(x)}_{\text {error of math. post. mean } \bigcirc}+\underbrace{\mu_{*}^{g}(x)-\mu_{i}^{g}(x)}_{\text {computational error } \bigcirc}}=\sqrt{k_{i}(x, x)+\sigma^{2}}
$$

Exact quantification of uncertainty from limited data and limited computation.

Policy Choice and Connection to Other Approximations

IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

	Actions s_{i}	Classic Analog
IterGP-Cholesky	e_{i}	(Partial) Cholesky / Subset of data
IterGP-CG	$\hat{P}^{-1} r_{i}$	(Preconditioned) CG
IterGP-Pseudolnput	$k\left(X, z_{i}\right)$	\approx SVGP

Computational Uncertainty

Combined Uncertainty

Policy Choice and Connection to Other Approximations

IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

	Actions s_{i}	Classic Analog
IterGP-Cholesky	e_{i}	(Partial) Cholesky / Subset of data
IterGP-CG	$\hat{P}^{-1} r_{i}$	(Preconditioned) CG
IterGP-Pseudolnput	$k\left(X, z_{i}\right)$	\approx SVGP

Computational Uncertainty

Combined Uncertainty

Policy Choice and Connection to Other Approximations

IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

	Actions s_{i}	Classic Analog
IterGP-Cholesky	e_{i}	(Partial) Cholesky / Subset of data
IterGP-CG	$\hat{P}^{-1} r_{i}$	(Preconditioned) CG
IterGP-Pseudolnput	$k\left(X, z_{i}\right)$	\approx SVGP

Computational Uncertainty

Combined Uncertainty

Policy Choice and Connection to Other Approximations

	Actions s_{i}	Classic Analog
IterGP-Cholesky	e_{i}	(Partial) Cholesky / Subset of data
IterGP-CG	$\hat{P}-r_{r_{i}}$	(Preconditioned) CG
IterGP-Pseudolnput	$k\left(X, z_{i}\right)$	\approx SVGP

Computational Uncertainty

Combined Uncertainty

Policy Choice and Connection to Other Approximations

IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

	Actions s_{i}	Classic Analog
IterGP-Cholesky	e_{i}	(Partial) Cholesky / Subset of data
IterGP-CG	$\hat{P}^{-1} r_{i}$	(Preconditioned) CG
IterGP-Pseudolnput	$k\left(X, z_{i}\right)$	\approx SVGP

Computational Uncertainty

Combined Uncertainty

Policy Choice and Connection to Other Approximations

IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

	Actions s_{i}	Classic Analog
IterGP-Cholesky	e_{i}	(Partial) Cholesky / Subset of data
IterGP-CG	$\hat{P}^{-1} r_{i}$	(Preconditioned) CG
IterGP-Pseudolnput	$k\left(X, z_{i}\right)$	\approx SVGP

Computational Uncertainty

Combined Uncertainty

Policy Choice and Connection to Other Approximations

IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

	Actions s_{i}	Classic Analog
IterGP-Cholesky	e_{i}	(Partial) Cholesky / Subset of data
IterGP-CG	$\hat{P}^{-1} r_{i}$	(Preconditioned) CG
IterGP-Pseudolnput	$k\left(X, z_{i}\right)$	\approx SVGP

Computational Uncertainty

Combined Uncertainty

Policy Choice and Connection to Other Approximations

	Actions s_{i}	Classic Analog
IterGP-Cholesky	e_{i}	(Partial) Cholesky / Subset of data
IterGP-CG	$\hat{P}^{-1} r_{i}$	(Preconditioned) CG
IterGP-Pseudolnput	$k\left(X, z_{i}\right)$	\approx SVGP

Computational Uncertainty

Combined Uncertainty

Policy Choice and Connection to Other Approximations

IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

	Actions s_{i}	Classic Analog
IterGP-Cholesky	e_{i}	(Partial) Cholesky / Subset of data
IterGP-CG	$\hat{P}^{-1} r_{i}$	(Preconditioned) CG
IterGP-Pseudolnput	$k\left(X, z_{i}\right)$	\approx SVGP

Computational Uncertainty

Combined Uncertainty

Policy Choice and Connection to Other Approximations

IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

	Actions s_{i}	Classic Analog
IterGP-Cholesky	e_{i}	(Partial) Cholesky / Subset of data
IterGP-CG	$\hat{P}^{-1} r_{i}$	(Preconditioned) CG
IterGP-Pseudolnput	$k\left(X, z_{i}\right)$	\approx SVGP

Computational Uncertainty Combined Uncertainty

Policy Choice and Connection to Other Approximations

IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

Policy Choice and Connection to Other Approximations

SVGP versus IterGP-PI

Ind. Points / Iteration

Parkinson's
($n=5,287, d=21$)

Ind. Points / Iteration

Bike Sharing
($n=15,641, d=16$)

Ind. Points / Iteration

Protein
($n=41,157, d=9$)

Ind. Points / Iteration

KEGGundir

($n=57,247, d=26$)

Ind. Points / Iteration

Ind. Points / Iteration

Parkinson's

Ind. Points / Iteration

Bike Sharing
($n=15,641, d=16$)

Ind. Points / Iteration

Protein
($n=41,157, d=9$)

Ind. Points / Iteration

KEGGundir ($n=57,247, d=26$)

Ind. Points / Iteration

What about optimizing inducing point locations?

 Ind. Points / Iteration

Ind. Points / Iteration

Ind. Points / Iteration

Protein
($n=41,157, d=9$)

Ind. Points / Iteration

What about computational cost? SVGP: $\mathcal{O}\left(n i^{2}\right)$ versus IterGP: $\mathcal{O}\left(n^{2} i\right)$.

Training Gaussian Processes on Large-Scale Data

Training Gaussian Processes on Large-Scale Data

Faster large-scale Gaussian processes with better generalization!

Other Applications

Extending these ideas beyond what we've seen.

Spatiotemporal Modeling

Spatio-temporal regression of Earth surface temperature via computation-aware filtering and smoothing.

Physics-Informed GP Regression

Learning to solve linear partial differential equations.

Wrapping Up

Summary

- Large-scale linear systems are ubiquitous in scientific computation.

Wrapping Up

Summary

- Large-scale linear systems are ubiquitous in scientific computation.
- Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Wrapping Up

Summary

- Large-scale linear systems are ubiquitous in scientific computation.
\rightarrow Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Application: Gaussian Processes

- Large-scale GP models are often as much about the approximation as they are about the data.

Wrapping Up

Summary

- Large-scale linear systems are ubiquitous in scientific computation.
\rightarrow Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Application: Gaussian Processes

- Large-scale GP models are often as much about the approximation as they are about the data.

Wrapping Up

Summary

- Large-scale linear systems are ubiquitous in scientific computation.
- Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Application: Gaussian Processes

- Large-scale GP models are often as much about the approximation as they are about the data.
- We can exactly quantify the error from finite data and from the approximation via a combined uncertainty estimate. $\Rightarrow \Rightarrow$ IterGP

Wrapping Up

Summary

- Large-scale linear systems are ubiquitous in scientific computation.
- Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Application: Gaussian Processes

- Large-scale GP models are often as much about the approximation as they are about the data.
- We can exactly quantify the error from finite data and from the approximation via a combined uncertainty estimate. $\Rightarrow \Rightarrow$ IterGP
- Explicit trade-off between computation and uncertainty via probabilistic linear solver.

Wrapping Up

Summary

- Large-scale linear systems are ubiquitous in scientific computation.
- Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Application: Gaussian Processes

- Large-scale GP models are often as much about the approximation as they are about the data.
- We can exactly quantify the error from finite data and from the approximation via a combined uncertainty estimate. $\Rightarrow \Rightarrow$ IterGP
- Explicit trade-off between computation and uncertainty via probabilistic linear solver.

Open Research Questions / Future Directions

- Calibration.
- Policy design for downstream tasks (Active learning, Bayesian optimization, ...).
- ...?

Table of Contents

1 Introduction
2 Probabilistic Linear Solvers
2.1 Derivation
2.2 Policy Choice
2.3 Prior Choice
2.4 Algorithm

3 Application: Large-Scale Gaussian Processes
3.1 Gaussian Process Inference at Scale
3.2 Quantifying Approximation Error
3.3 Algorithm: IterGP
3.4 Theoretical Analysis
3.5 Policy Choice Illustrated
3.6 Experiments

4 Summary and Extensions
5 Additional Material5.1 Calibration

Additional Material

Calibration of BayesCG

Why is uncertainty quantification sometimes conservative for probabilistic linear solvers?
Observation: Uncertainty quantification of probabilistic linear solvers can be conservative!

Figure: IterGP using a (conjugate) gradient policy.

Calibration of BayesCG

Observation: Uncertainty quantification of probabilistic linear solvers can be conservative!

Figure: IterGP using a (conjugate) gradient policy.
Why is that? We conditioned on $\alpha_{i}=s_{i}^{\top} r_{i-1}=s_{i}^{\top} A\left(x_{*}-x_{i-1}\right)$.
But: We've "cheated" for a gradient policy, since $s_{i}=b-A x_{i-1}=A\left(x_{*}-x_{i-1}\right)=s_{i}\left(x_{*}\right)$.

Theorem (Online GP Approximation with IterGP)

Let $n, n^{\prime} \in \mathbb{N}$ and consider training data sets $\boldsymbol{X} \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^{n}$ and $X^{\prime} \in \mathbb{R}^{n^{\prime} \times d}, y^{\prime} \in \mathbb{R}^{n^{\prime}}$. Consider two sequences of actions
$\left(s_{i}\right)_{i=1}^{n} \in \mathbb{R}^{n}$ and $\left(\tilde{s}_{i}\right)_{i=1}^{n+n^{\prime}} \in \mathbb{R}^{n+n^{\prime}}$ such that

$$
\begin{equation*}
\tilde{s}_{i}=\binom{s_{i}}{0} \tag{1}
\end{equation*}
$$

Then the posterior returned by IterGP for the dataset $(\boldsymbol{X}, \boldsymbol{y})$ using actions s_{i} is identical to the posterior returned by IterGP for the extended dataset using actions \tilde{s}_{i} :

$$
\operatorname{ITERGP}\left(\mu, k, X, y,\left(s_{i}\right)_{i}\right)=\operatorname{ITERGP}\left(\mu, k,\binom{x}{x^{\prime}},\binom{y}{y^{\prime}},\left(\tilde{s}_{i}\right)_{i}\right) .
$$

An Approximation Method or a Better Model?

Observation: Only once we perform computation on data, does it enter our prediction.

An Approximation Method or a Better Model?

Observation: Only once we perform computation on data, does it enter our prediction.

The distinction between data and computation vanishes.

An Approximation Method or a Better Model?

Observation: Only once we perform computation on data, does it enter our prediction.

The distinction between data and computation vanishes.
What if we modeled this situation with a Gaussian process?

$$
\begin{aligned}
f & \sim \mathcal{G P}(\mu, k) \\
\tilde{y} \mid f(X) & \sim \mathcal{N}\left(S_{i}^{\top} f(X), \sigma^{2} S_{i}^{\top} S_{i}\right) \\
f \mid X, \tilde{y} & \sim \mathcal{G P}\left(\mu_{i}, k_{i}\right)
\end{aligned}
$$

An Approximation Method or a Better Model?

Observation: Only once we perform computation on data, does it enter our prediction.

The distinction between data and computation vanishes.
What if we modeled this situation with a Gaussian process?

$$
\begin{aligned}
f & \sim \mathcal{G P}(\mu, k) \\
\tilde{y} \mid f(X) & \sim \mathcal{N}\left(S_{i}^{\top} f(X), \sigma^{2} S_{i}^{\top} S_{i}\right) \\
f \mid X, \tilde{y} & \sim \mathcal{G} \mathcal{P}\left(\mu_{i}, k_{i}\right)
\end{aligned}
$$

IterGP's combined posterior is equivalent to exact GP regression for linearly projected data.

- E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and P. Hennig. Laplace Redux - Effortless Bayesian Deep Learning. 2022. Dol: 10.48550/arXiv . 2106.14806. URL: http://arxiv .org/abs/2106.14806 (cit. on p. 7).
P. Hennig, M. A. Osborne, and M. Girolami. "Probabilistic numerics and uncertainty in computations". In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 471.2179 (2015) (cit. on pp. 9-12).
J. Cockayne, C. J. Oates, T. J. Sullivan, and M. Girolami. "Bayesian Probabilistic Numerical Methods". In: SIAM Review 61.4 (2019), pp. 756-789. Dol: 10.1137/17M1139357 (cit. on pp. 9-12).
P. Hennig, M. A. Osborne, and H. P. Kersting. Probabilistic Numerics: Computation as Machine Learning. CUP, 2022. ISBN: 978-1-316-68141-1. Dol: 10.1017/9781316681411 (cit. on pp. 9-12).
P. Hennig. "Probabilistic Interpretation of Linear Solvers". In: SIAM Journal on Optimization 25.1 (2015), pp. 234-260 (cit. on pp. 9-21).
J. Cockayne, C. J. Oates, I. C. Ipsen, and M. Girolami. "A Bayesian Conjugate Gradient Method (with Discussion)". In: Bayesian Analysis 14.3 (2019), pp. 937-1012. Dol: 10.1214/19-BA1145 (cit. on pp. 9-23, 28, 30, 31).
J. Wenger and P. Hennig. "Probabilistic Linear Solvers for Machine Learning". In: Advances in Neural Information Processing Systems (NeurIPS). 2020 (cit. on pp. 9-12).
J. Wenger, G. Pleiss, M. Pförtner, P. Hennig, and J. P. Cunningham. "Posterior and Computational Uncertainty in Gaussian Processes". In: Advances in Neural Information Processing Systems (NeurIPS). 2022 (cit. on pp. 28, 48-59, 66-68, 102).
L. N. Trefethen and D. Bau. Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM), 1997 (cit. on p. 29).
M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur. Gaussian processes and kernel methods: A review on connections and equivalences. 2018. arXiv: 1807. 02582 (cit. on pp. 66-68).
M. Titsias. "Variational learning of inducing variables in sparse Gaussian processes". In: International Conference on Artificial Intelligence and Statistics (AISTATS). 2009 (cit. on pp. 81-84).
J. Hensman, N. Fusi, and N. D. Lawrence. "Gaussian processes for big data". In: Conference on Uncertainty in Artificial Intelligence (UAI). 2013 (cit. on pp. 81-84).
M. Pförtner, I. Steinwart, P. Hennig, and J. Wenger. Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers. 2023. Dol: 10.48550/arXiv .2212. 12474. URL: http ://arxiv. org/abs / 2212. 12474 (cit. on p. 89).
L. Tatzel, J. Wenger, F. Schneider, and P. Hennig. Accelerating Generalized Linear Models by Trading off Computation for Uncertainty. 2023. DoI: 10.48550/arXiv . 2310.20285. URL: http ://arxiv. org/abs/2310. 20285 (cit. on p. 90).

