Probabilistic Linear Solvers

Jonathan Wenger

COLUMBIA | Zuckerman Institute

Arguably, the most fundamental numerical task in scientific computing and machine learning.

Probabilistic / Kernel Methods

Optimization

Graphs and (Neural) Networks

Differential Equations

...and many more.

Example: Probability theory

Normal Distribution

$$\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$\boldsymbol{\rho}(\boldsymbol{x}) = \frac{1}{\sqrt{(2\pi)^n \det(\boldsymbol{\Sigma})}} \exp(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu}))$$

Example: Probabilistic Models and Kernel Methods.

Gaussian Processes $\begin{aligned} f \sim \mathcal{GP}(\mu, k) \\ f \mid \mathbf{X}, \mathbf{y} \sim \mathcal{GP}(\mu_{\text{post}}, k_{\text{post}}) \\ \mu_{\text{post}}(\mathbf{X}) = \mu(\mathbf{X}) + k(\mathbf{X}, \mathbf{X})(k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})^{-1}(\mathbf{y} - \mu(\mathbf{X})) \\ k_{\text{post}}(\mathbf{x}_0, \mathbf{x}_1) = k(\mathbf{x}_0, \mathbf{x}_1) - k(\mathbf{x}_0, \mathbf{X})(k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})^{-1}k(\mathbf{X}, \mathbf{x}_1) \end{aligned}$

Example: Linear Differential Equations

Galerkin Method

<u></u>

Example: Optimization.

Iterative Optimization Methods

 $\theta_i \approx \underset{\theta \in \Theta}{\arg\min} \mathcal{L}(\theta)$ $\theta_i = \theta_{i-1} + \alpha_i M_i d_i$

Examples: natural / conjugate / stochastic gradient descent, (Quasi-) Newton method, ...

Example: Bayesian Deep Learning

Feedforward Neural Network

$$z^{0}(x, \theta) = x$$

$$z^{\ell+1}(x, \theta) = \sigma(W^{\ell}z^{\ell} + b^{\ell})$$

$$y := f(x, \theta) = z^{L}(x, \theta)$$

Bayesian deep learning via Laplace approximation: $p(\boldsymbol{\theta} \mid \mathcal{D}) \approx \mathcal{N}(\boldsymbol{\theta}; \boldsymbol{\theta}_{MAP}, (\nabla_{\boldsymbol{\theta}}^{2} \mathcal{L}(\boldsymbol{\theta})|_{\boldsymbol{\theta}_{MAP}})^{-1})$

Probabilistic Linear Solvers

Learning the solution of a linear system.

Solving linear systems as probabilistic inference.

Goal

Solve large-scale linear system $Ax_* = b$ for $x_* \in \mathbb{R}^n$.

Solving linear systems as probabilistic inference.

[Hen15; Coc+19b; WH20]

Goal

Solve large-scale linear system $Ax_* = b$ for $x_* \in \mathbb{R}^n$.

Core Insights of Probabilistic Numerics

[HOG15; Coc+19a; HOK22]

> The solution to any numerical problem is fundamentally uncertain.

Solving linear systems as probabilistic inference.

Goal

Solve large-scale linear system $Ax_* = b$ for $x_* \in \mathbb{R}^n$.

Core Insights of Probabilistic Numerics

[HOG15; Coc+19a; HOK22]

- > The solution to any numerical problem is fundamentally uncertain.
- Numerical algorithms are learning agents, which actively collect data and make predictions.

Solving linear systems as probabilistic inference.

Goal

Solve large-scale linear system $Ax_* = b$ for $x_* \in \mathbb{R}^n$.

Core Insights of Probabilistic Numerics

[HOG15; Coc+19a; HOK22]

- > The solution to any numerical problem is fundamentally uncertain.
- Numerical algorithms are learning agents, which actively collect data and make predictions.

Probabilistic Linear Solvers - Jonathan Wenger - April 10, 2024

Estimating the solution of a linear system with a probabilistic linear solver.

Goal: Solve $Ax_* = b$ for x_* .

Prior:

 $\mathbf{x}_* \sim \mathcal{N}(\mathbf{x}_0, \mathbf{\Sigma}_0)$

Estimating the solution of a linear system with a probabilistic linear solver.

Goal: Solve $Ax_* = b$ for x_* .

 $\label{eq:prior: constraint} \text{Prior: } \quad \textbf{\textit{x}}_* \sim \mathcal{N}(\textbf{\textit{x}}_0, \boldsymbol{\Sigma}_0)$

Likelihood: Observe x_* via arbitrary actions s_i :

$$\alpha_i \coloneqq \mathbf{s}_i^{\mathsf{T}} \mathbf{A} (\mathbf{x}_* - \mathbf{x}_{i-1}) = \mathbf{s}_i^{\mathsf{T}} \mathbf{r}_{i-1}$$

$$p(\alpha_i \mid \mathbf{x}_*) = \lim_{\varepsilon \to 0} \mathcal{N}(\alpha_i; 0, \varepsilon)$$

$$\begin{array}{c} \star \\ \bullet \\ \text{Approximation } \boldsymbol{x}_{i-1} \\ \hline \\ \text{Belief } p(\boldsymbol{x}_{*}) = \mathcal{N}(\boldsymbol{x}_{i-1},\boldsymbol{\Sigma}_{i-1}) \\ \hline \\ \text{Action } \boldsymbol{s}_{i} \end{array}$$

Estimating the solution of a linear system with a probabilistic linear solver.

Goal: Solve $Ax_* = b$ for x_* .

Prior: $\mathbf{x}_* \sim \mathcal{N}(\mathbf{x}_0, \mathbf{\Sigma}_0)$

Likelihood: Observe x_* via arbitrary actions s_i :

$$\alpha_i \coloneqq \mathbf{s}_i^{\mathsf{T}} \mathbf{A} (\mathbf{x}_* - \mathbf{x}_{i-1}) = \mathbf{s}_i^{\mathsf{T}} \mathbf{r}_{i-1}$$

$$p(\alpha_i \mid \mathbf{x}_*) = \lim_{\varepsilon \to 0} \mathcal{N}(\alpha_i; 0, \varepsilon)$$

Posterior: Bayes' rule gives a closed form update!

Estimating the solution of a linear system with a probabilistic linear solver.

Goal: Solve $Ax_* = b$ for x_* .

Prior: $\mathbf{x}_* \sim \mathcal{N}(\mathbf{x}_0, \mathbf{\Sigma}_0)$

Likelihood: Observe x_* via arbitrary actions s_i :

$$\alpha_i \coloneqq \mathbf{s}_i^{\mathsf{T}} \mathbf{A} (\mathbf{x}_* - \mathbf{x}_{i-1}) = \mathbf{s}_i^{\mathsf{T}} \mathbf{r}_{i-1}$$

$$p(\alpha_i \mid \mathbf{x}_*) = \lim_{\varepsilon \to 0} \mathcal{N}(\alpha_i; 0, \varepsilon)$$

Estimating the solution of a linear system with a probabilistic linear solver.

Goal: Solve $Ax_* = b$ for x_* .

Prior: $\mathbf{x}_* \sim \mathcal{N}(\mathbf{x}_0, \mathbf{\Sigma}_0)$

Likelihood: Observe x_* via arbitrary actions s_i :

$$\alpha_i \coloneqq \mathbf{s}_i^{\mathsf{T}} \mathbf{A} (\mathbf{x}_* - \mathbf{x}_{i-1}) = \mathbf{s}_i^{\mathsf{T}} \mathbf{r}_{i-1}$$

$$p(\alpha_i \mid \mathbf{x}_*) = \lim_{\varepsilon \to 0} \mathcal{N}(\alpha_i; 0, \varepsilon)$$

Estimating the solution of a linear system with a probabilistic linear solver.

Goal: Solve $Ax_* = b$ for x_* .

Prior: $\mathbf{x}_* \sim \mathcal{N}(\mathbf{x}_0, \mathbf{\Sigma}_0)$

Likelihood: Observe x_* via arbitrary actions s_i :

$$\alpha_i \coloneqq \mathbf{s}_i^{\mathsf{T}} \mathbf{A} (\mathbf{x}_* - \mathbf{x}_{i-1}) = \mathbf{s}_i^{\mathsf{T}} \mathbf{r}_{i-1}$$

$$p(\alpha_i \mid \mathbf{x}_*) = \lim_{\varepsilon \to 0} \mathcal{N}(\alpha_i; 0, \varepsilon)$$

Estimating the solution of a linear system with a probabilistic linear solver.

Goal: Solve $Ax_* = b$ for x_* .

Prior: $\mathbf{x}_* \sim \mathcal{N}(\mathbf{x}_0, \mathbf{\Sigma}_0)$

Likelihood: Observe x_* via arbitrary actions s_i :

$$\alpha_i \coloneqq \mathbf{s}_i^{\mathsf{T}} \mathbf{A} (\mathbf{x}_* - \mathbf{x}_{i-1}) = \mathbf{s}_i^{\mathsf{T}} \mathbf{r}_{i-1}$$

$$p(\alpha_i \mid \mathbf{x}_*) = \lim_{\varepsilon \to 0} \mathcal{N}(\alpha_i; 0, \varepsilon)$$

Estimating the solution of a linear system with a probabilistic linear solver.

Goal: Solve $Ax_* = b$ for x_* .

Prior: $\mathbf{x}_* \sim \mathcal{N}(\mathbf{x}_0, \mathbf{\Sigma}_0)$

Likelihood: Observe x_* via arbitrary actions s_i :

$$\alpha_i \coloneqq \mathbf{s}_i^{\mathsf{T}} \mathbf{A} (\mathbf{x}_* - \mathbf{x}_{i-1}) = \mathbf{s}_i^{\mathsf{T}} \mathbf{r}_{i-1}$$

$$p(\alpha_i \mid \mathbf{x}_*) = \lim_{\varepsilon \to 0} \mathcal{N}(\alpha_i; 0, \varepsilon)$$

Estimating the solution of a linear system with a probabilistic linear solver.

Goal: Solve $Ax_* = b$ for x_* .

Prior: $x_* \sim \mathcal{N}(x_0, \Sigma_0)$

Likelihood: Observe x_* via arbitrary actions s_i :

$$\alpha_i \coloneqq \mathbf{s}_i^{\mathsf{T}} \mathbf{A} (\mathbf{x}_* - \mathbf{x}_{i-1}) = \mathbf{s}_i^{\mathsf{T}} \mathbf{r}_{i-1}$$

$$p(\alpha_i \mid \mathbf{x}_*) = \lim_{\varepsilon \to 0} \mathcal{N}(\alpha_i; 0, \varepsilon)$$

Posterior: $\mathbf{x}_* \mid \alpha_1, \dots, \alpha_i \sim \mathcal{N}(\mathbf{x}_i, \mathbf{\Sigma}_i)$ $\mathbf{x}_i = \mathbf{x}_0 + \mathbf{\Sigma}_0 A S_i (S_i^{\mathsf{T}} A \mathbf{\Sigma}_0 A S_i)^{-1} S_i^{\mathsf{T}} (\mathbf{b} - A \mathbf{x}_0)$ $\mathbf{\Sigma}_i = \mathbf{\Sigma}_0 - \mathbf{\Sigma}_0 A S_i (S_i^{\mathsf{T}} A \mathbf{\Sigma}_0 A S_i)^{-1} S_i^{\mathsf{T}} A \mathbf{\Sigma}_0$

How do we choose the linear solver actions *S* and the prior $\mathcal{N}(x_0, \Sigma_0)$?

Observation: Actions "weigh" entries in the residual: $\alpha_i := \mathbf{s}_i^{\mathsf{T}} \mathbf{r}_{i-1} = \mathbf{s}_i^{\mathsf{T}} \mathbf{A} (\mathbf{x}_* - \mathbf{x}_{i-1})$

Observation: Actions "weigh" entries in the residual: $\alpha_i := \mathbf{s}_i^{\mathsf{T}} \mathbf{r}_{i-1} = \mathbf{s}_i^{\mathsf{T}} \mathbf{A} (\mathbf{x}_* - \mathbf{x}_{i-1})$

Idea: Focus computation where residual is large: $s_i = r_{i-1} \implies \alpha_i = ||r_{i-1}||_2^2$

⇒ BayesCG [Coc+19b]

Efficiently solving linear systems with positive definite system matrix via matrix-vector multiplies.

Goal: Approximately solve linear system $Ax_* = b$.

Idea: Rephrase as quadratic optimization problem and optimize. Let

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} - \mathbf{b}^{\mathsf{T}}\mathbf{x}$$

then
$$\nabla f(\mathbf{x}_*) = \mathbf{0} \iff A\mathbf{x}_* = \mathbf{b} \iff r(\mathbf{x}_*) \coloneqq \mathbf{b} - A\mathbf{x}_* = \mathbf{0}$$
.

Question: How should we optimize?

Oleg Alexandrov, commons.wikimedia.org/w/in dex.php?curid=2267598

Efficiently solving linear systems with positive definite system matrix via matrix-vector multiplies.

Goal: Approximately solve linear system $Ax_* = b$.

Idea: Rephrase as guadratic optimization problem and optimize. Let

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} - \mathbf{b}^{\mathsf{T}}\mathbf{x}$$

then
$$abla f(\pmb{x}_*) = \pmb{0} \iff \pmb{A}\pmb{x}_* = \pmb{b} \iff r(\pmb{x}_*) \coloneqq \pmb{b} - \pmb{A}\pmb{x}_* = \pmb{0}.$$

Question: How should we optimize?

Gradient descent: Follow $d_i = r(\mathbf{x}_i) = -\nabla f(\mathbf{x}_i)$ s.t. $\langle d_i, d_i \rangle = 0$. 1

Efficiently solving linear systems with positive definite system matrix via matrix-vector multiplies.

Goal: Approximately solve linear system $Ax_* = b$.

Idea: Rephrase as quadratic optimization problem and optimize. Let

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} - \mathbf{b}^{\mathsf{T}}\mathbf{x}$$

then
$$abla f(\pmb{x}_*) = \pmb{0} \iff \pmb{A}\pmb{x}_* = \pmb{b} \iff r(\pmb{x}_*) \coloneqq \pmb{b} - \pmb{A}\pmb{x}_* = \pmb{0}.$$

Question: How should we optimize?

Gradient descent: Follow $d_i = r(\mathbf{x}_i) = -\nabla f(\mathbf{x}_i)$ s.t. $\langle d_i, d_j \rangle = 0$.

2 Conjugate direction method: Follow d_i s. t. $\langle d_i^{\mathsf{T}} d_j \rangle_{\mathsf{A}} = d_i^{\mathsf{T}} \mathsf{A} d_j = 0$ for $i \neq j$. \Rightarrow convergence in at most *n* steps.

Oleg Alexandrov, commons.wikimedia.org/w/index.php?curid=2267598

Efficiently solving linear systems with positive definite system matrix via matrix-vector multiplies.

Goal: Approximately solve linear system $Ax_* = b$.

Idea: Rephrase as quadratic optimization problem and optimize. Let

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} - \mathbf{b}^{\mathsf{T}}\mathbf{x}$$

then
$$abla f(\pmb{x}_*) = \pmb{0} \iff \pmb{A}\pmb{x}_* = \pmb{b} \iff r(\pmb{x}_*) \coloneqq \pmb{b} - \pmb{A}\pmb{x}_* = \pmb{0}.$$

Question: How should we optimize?

Gradient descent: Follow $d_i = r(\mathbf{x}_i) = -\nabla f(\mathbf{x}_i)$ s.t. $\langle d_i, d_j \rangle = 0$.

2 Conjugate direction method: Follow d_i s. t. $\langle d_i^T d_j \rangle_A = d_i^T A d_j = 0$ for $i \neq j$. \Rightarrow convergence in at most *n* steps.

3 Conjugate gradient method: First step $d_0 = r(x_0)$.

Observation: Actions S_i "weigh" entries in the residual: $\alpha_i := s_i^{\mathsf{T}} r_{i-1} = s_i^{\mathsf{T}} A(x_* - x_{i-1})$

Idea: Focus computation where residual is large: $\mathbf{s}_i = \mathbf{r}_{i-1} \implies \alpha_i = \|\mathbf{r}_{i-1}\|_2^2$

⇒ BayesCG [Coc+19b]

Theorem (Equivalence to Conjugate Gradient Method [Coc+19b; Wen+22])

If $\mathbf{x}_0 = \mathbf{0}$, $\mathbf{\Sigma}_0 = \mathbf{A}^{-1}$ and the actions are either conjugate gradients $\mathbf{s}_i = \mathbf{d}_i^{CG}$ or gradients $\mathbf{s}_i = \mathbf{r}_{i-1}$, then the posterior mean $\mathbf{x}_i = \mathbf{x}_i^{CG}$ of BayesCG is equivalent to the approximation returned by CG.

Convergence Behavior of the Conjugate Gradient Method

The spectrum of the matrix determines the convergence speec

 $n = 10^3 \quad \kappa(A) \approx 7 \cdot 10^5$

 $H_{\text{UU}}^{\text{HOV}} = \begin{pmatrix} 10^0 \\ 10^{-3} \\ 10^{-6} \\ 10^{-9} \\ 10^{-12} \\ 0 \\ 50 \\ 100 \\ 150 \\ 200 \\ 250 \\ \text{iteration} \end{pmatrix}$

Theorem (Convergence Rate of CG[TB97])

$$\|\mathbf{x} - \mathbf{x}_i\|_{\mathbf{A}} \le 2\left(\frac{\sqrt{\kappa(\mathbf{A}) - 1}}{\sqrt{\kappa(\mathbf{A}) + 1}}\right)^{i} \|\mathbf{x} - \mathbf{x}_0\|_{\mathbf{A}}$$

CG converges fast for a small condition number.

Prior Choice

Comparing different choices of prior for BayesCG.

Prior

$$\mathbf{x}_* \sim \mathcal{N}(\mathbf{x}_0, \mathbf{\Sigma}_0)$$

 \Rightarrow

Prior Choice

Comparing different choices of prior for BayesCG.

Prior

 $10^{(}$

10⁻²

 $\frac{\overset{\mathfrak{K}}{\overset{\mathfrak{K}}{=}}}{10^{-8}}$ 10^{-8} 10^{-10}

$$\mathbf{x}_* \sim \mathcal{N}(\mathbf{x}_0, \mathbf{\Sigma}_0)$$

Computed

Sequentially

CG

_				
1	procedure ProbabilisticLinearSolver($A, b, x_0 = 0, \Sigma_0$)		Time	Space
2	while not StoppingCriterion() do			
3	$s_i \leftarrow Policy()$	Select action via policy.		
4	$r_{i-1} \leftarrow b - Ax_{i-1}$	Residual.	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
5	$\alpha_i \leftarrow \mathbf{s}_i^{T} \mathbf{r}_{i-1}$	Observation.	$\mathcal{O}(n)$	$\mathcal{O}(1)$
6	$z_i \leftarrow As_i$		$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
7	$d_i \leftarrow \Sigma_{i-1} A s_i = \Sigma_{i-1} z_i$	Search direction.	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
8	$\eta_i \leftarrow s_i^{T} A \Sigma_{i-1} A s_i = \mathbf{z}_i^{T} \mathbf{d}_i$		$\mathcal{O}(n)$	$\mathcal{O}(1)$
9	$oldsymbol{C}_i \leftarrow oldsymbol{C}_{i-1} + rac{1}{\eta_i}oldsymbol{d}_i^{ op}$		$\mathcal{O}(n)$	$\mathcal{O}(ni)$
10	$\mathbf{x}_i \leftarrow \mathbf{x}_{i-1} + \frac{lpha_i}{n_i} \mathbf{d}_i$	Solution estimate.	$\mathcal{O}(n)$	$\mathcal{O}(n)$
11	$\mathbf{\Sigma}_i \leftarrow \mathbf{\Sigma}_0 - \mathbf{C}_i$	Uncertainty.		
12	return $\mathcal{N}(\mathbf{x}_i, \mathbf{\Sigma}_i)$			

Application: Gaussian Processes

Scaling Gaussian processes via probabilistic linear solvers.

earning an unknown function f<u>rom data.</u>

Goal: Supervised learning from *n* data points (*X*, *y*)

Prior: Gaussian process $f \sim \mathcal{GP}(\mu, k)$

Likelihood: Observations $\mathbf{y} = f(\mathbf{X}) + \boldsymbol{\varepsilon} \sim \mathcal{N}(f(\mathbf{X}), \sigma^2 \mathbf{I})$

Posterior:
$$f \mid \mathbf{X}, \mathbf{y} \sim \mathcal{GP}(\mu_*, k_*)$$
 with
 $\mu_*(\cdot) = \mu(\cdot) + \mathcal{K}(\cdot, \mathbf{X})\hat{\mathcal{K}}^{-1}(\mathbf{y} - \mu(\mathbf{X}))$
 $\mathcal{K}_*(\cdot, \cdot) = \mathcal{K}(\cdot, \cdot) - \mathcal{K}(\cdot, \mathbf{X})\hat{\mathcal{K}}^{-1}\mathcal{K}(\mathbf{X}, \cdot)$
where $\hat{\mathcal{K}} = \mathcal{K} + \sigma^2 I \in \mathbb{R}^{n \times n}$

earning an unknown function from data.

Goal: Supervised learning from *n* data points (*X*, *y*)

Prior: Gaussian process $f \sim \mathcal{GP}(\mu, k)$

Likelihood: Observations $\mathbf{y} = f(\mathbf{X}) + \boldsymbol{\varepsilon} \sim \mathcal{N}(f(\mathbf{X}), \sigma^2 \mathbf{I})$

Posterior: $f \mid \mathbf{X}, \mathbf{y} \sim \mathcal{GP}(\mu_*, k_*)$ with $\mu_*(\cdot) = \mu(\cdot) + \mathcal{K}(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}(\mathbf{y} - \mu(\mathbf{X}))$ $\mathcal{K}_*(\cdot, \cdot) = \mathcal{K}(\cdot, \cdot) - \mathcal{K}(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}\mathcal{K}(\mathbf{X}, \cdot)$

where $\hat{K} = K + \sigma^2 I \in \mathbb{R}^{n \times n}$.

κ̂ =	
	n×n

Computational Cost of Gaussian Processes

Gaussian processes scale prohibitively with the size *n* of the dataset

Computational Cost of Gaussian Processes

Gaussian processes scale prohibitively with the size *n* of the dataset

We need to approximate the posterior.

Approximate Gaussian Process Inference

Impact of approximations on uncertainty quantification and decision-making.

Approximate Gaussian Process Inference

Impact of approximations on uncertainty quantification and decision-making.

Approximations introduce error, which impacts downstream decisions.

Question 1:

How can we perform Gaussian process inference at scale?

Question 1:

How can we perform Gaussian process inference at scale?

Question 2:

How can we quantify the inevitable approximation error?

Q1: Gaussian Process Inference at Scale?

Efficiently approximating the posterior of a Gaussian process.

The posterior mean is a linear combination of kernel functions centered at data points

$$f \mid \mathbf{X}, \mathbf{y} \sim \mathcal{GP}(\mu_*, k_*)$$

$$\mu_*(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X}) \underbrace{\hat{\mathbf{K}}^{-1}(\mathbf{y} - \mu(\mathbf{X}))}_{\text{representer weights } \mathbf{v}_*} = \mu(\cdot) + \sum_{j=1}^n k(\cdot, \mathbf{x}_j)(\mathbf{v}_*)_j$$

 \mathbf{n}

Approximating Representer Weights

Iterative linear solvers can be used to approximate the representer weights.

$$\mu_*(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X}) \underbrace{\hat{\mathbf{K}}^{-1}(\mathbf{y} - \mu(\mathbf{X}))}_{\mathbf{x}} \approx \mu(\cdot) + k(\cdot, \mathbf{X}) \mathbf{v}_i$$

representer weights v*

Known: Can use iterative linear solvers (e.g. CG) to approximate representer weights $v_* \approx v_i$.

Approximating Representer Weights

Iterative linear solvers can be used to approximate the representer weights

$$\mu_*(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X}) \underbrace{\hat{\mathbf{K}}^{-1}(\mathbf{y} - \mu(\mathbf{X}))}_{\text{representer weights } \mathbf{v}_*} \approx \mu(\cdot) + k(\cdot, \mathbf{X}) \mathbf{v}_i$$

Known: Can use iterative linear solvers (e.g. CG) to approximate representer weights $v_* \approx v_i$.

Approx. GP Posterior Mean
 Data
 Kernel Function(s) × Approx. Representer Weight(s)

Benefit: Time complexity $\mathcal{O}(n^2)$ and space complexity $\mathcal{O}(nd)$.

Probabilistic Linear Solvers - Jonathan Wenger - April 10, 2024

Approximating Representer Weights

Iterative linear solvers can be used to approximate the representer weights.

$$\mu_{*}(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X}) \underbrace{\mathbf{\hat{K}}^{-1}(\mathbf{y} - \mu(\mathbf{X}))}_{\text{representer weights } \mathbf{v}_{*}} \approx \mu(\cdot) + k(\cdot, \mathbf{X}) \mathbf{v}_{i}$$

Known: Can use iterative linear solvers (e.g. CG) to approximate representer weights $v_* \approx v_i$.

Approx. GP Posterior Mean
 Data
 Kernel Function(s) × Approx. Representer Weight(s)

Problem: Approximation error of the linear solve.

Q2: Can We Quantify Approximation Error?

Probabilistic error quantification at prediction time using probabilistic linear solvers.

Linear Solver Prior for GP Inference

The Gaussian process prior makes assumptions about the representer weights.

•

Observation:

GP prior induces representer weights prior:

$$\mathbf{y} - oldsymbol{\mu} \sim \mathcal{N}ig(\mathbf{0}, \hat{\mathbf{K}}ig)$$

Linear Solver Prior for GP Inference

The Gaussian process prior makes assumptions about the representer weights.

Observation:

GP prior induces representer weights prior:

$$\mathbf{y} - \mathbf{\mu} \sim \mathcal{N}(\mathbf{0}, \hat{\mathbf{K}})$$

 $\Rightarrow \mathbf{v}_* = \hat{\mathbf{K}}^{-1}(\mathbf{y} - \mathbf{\mu}) \sim \mathcal{N}\left(\underbrace{\mathbf{0}}_{=\mathbf{v}_0}, \underbrace{\hat{\mathbf{K}}^{-1}}_{=\mathbf{\Sigma}_0} \right)$

Linear Solver Posterior for GP Inference

Estimation of representer weights with a probabilistic linear solver.

Representer weights posterior $v_* \sim \mathcal{N}(v_i, \Sigma_i)$, s.t.

$$\mathbf{v}_i = \mathbf{C}_i(\mathbf{y} - \boldsymbol{\mu})$$

 $\mathbf{\Sigma}_i = \hat{\mathbf{K}}^{-1} - \mathbf{C}_i$

Linear Solver Posterior for GP Inference

Estimation of representer weights with a probabilistic linear solver.

Representer weights posterior $v_* \sim \mathcal{N}(v_i, \Sigma_i)$, s.t.

$$egin{aligned} \mathbf{v}_i &= \mathbf{C}_i(\mathbf{y} - oldsymbol{\mu}) \ \mathbf{\Sigma}_i &= \hat{\mathbf{K}}^{-1} - \mathbf{C}_i \end{aligned}$$

Chicken & Egg Problem: How can we get a probabilistic error estimate for $v_i \approx v_{*}$, if we need \hat{K}^{-1} ?

Quantifying uncertainty arising from observing finite data and performing a finite amount of computation.

Goal: Approximate the Gaussian process posterior $f \mid \mathbf{y} \sim \mathcal{GP}(\mu_*, k_*)$.

Quantifying uncertainty arising from observing finite data and performing a finite amount of computation.

Goal: Approximate the Gaussian process posterior $f \mid \mathbf{y} \sim \mathcal{GP}(\mu_*, k_*)$. **Obtained**: Belief about representer weights $\mathbf{v}_* = \hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{v}_i, \boldsymbol{\Sigma}_i) = \mathcal{N}(\mathbf{v}_i, \hat{\mathbf{K}}^{-1} - \mathbf{C}_i)$

Quantifying uncertainty arising from observing finite data and performing a finite amount of computation.

Goal: Approximate the Gaussian process posterior $f \mid \mathbf{y} \sim \mathcal{GP}(\mu_*, k_*)$. **Obtained**: Belief about representer weights $\mathbf{v}_* = \hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{v}_i, \boldsymbol{\Sigma}_i) = \mathcal{N}(\mathbf{v}_i, \hat{\mathbf{K}}^{-1} - \mathbf{C}_i)$

Idea: Propagate uncertainty about representer weights to posterior.

Quantifying uncertainty arising from observing finite data and performing a finite amount of computation.

Goal: Approximate the Gaussian process posterior $f \mid \mathbf{y} \sim \mathcal{GP}(\mu_*, k_*)$. **Obtained**: Belief about representer weights $\mathbf{v}_* = \hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{v}_i, \boldsymbol{\Sigma}_i) = \mathcal{N}(\mathbf{v}_i, \hat{\mathbf{K}}^{-1} - \mathbf{C}_i)$

Idea: Propagate uncertainty about representer weights to posterior.

Pathwise form of posterior:
$$(f \mid \mathbf{y})(\cdot) \stackrel{d}{=} f(\cdot) + k(\cdot, \mathbf{X}) \underbrace{\hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu})}_{=\mathbf{v}_*} \stackrel{d}{=} (f \mid \mathbf{v}_*)(\cdot)$$

Quantifying uncertainty arising from observing finite data and performing a finite amount of computation.

Goal: Approximate the Gaussian process posterior $f \mid \mathbf{y} \sim \mathcal{GP}(\mu_*, k_*)$. **Obtained**: Belief about representer weights $\mathbf{v}_* = \hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{v}_i, \boldsymbol{\Sigma}_i) = \mathcal{N}(\mathbf{v}_i, \hat{\mathbf{K}}^{-1} - \mathbf{C}_i)$

Idea: Propagate uncertainty about representer weights to posterior.

Pathwise form of posterior:
$$(f \mid \mathbf{y})(\cdot) \stackrel{d}{=} f(\cdot) + k(\cdot, \mathbf{X}) \underbrace{\hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu})}_{=\mathbf{v}_*} \stackrel{d}{=} (f \mid \mathbf{v}_*)(\cdot)$$

Quantifying uncertainty arising from observing finite data and performing a finite amount of computation.

Goal: Approximate the Gaussian process posterior $f \mid \mathbf{y} \sim \mathcal{GP}(\mu_*, k_*)$. **Obtained**: Belief about representer weights $\mathbf{v}_* = \hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{v}_i, \boldsymbol{\Sigma}_i) = \mathcal{N}(\mathbf{v}_i, \hat{\mathbf{K}}^{-1} - \mathbf{C}_i)$

Idea: Propagate uncertainty about representer weights to posterior.

Pathwise form of posterior:
$$(f \mid \mathbf{y})(\cdot) \stackrel{d}{=} f(\cdot) + k(\cdot, \mathbf{X}) \underbrace{\hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu})}_{=\mathbf{v}_*} \stackrel{d}{=} (f \mid \mathbf{v}_*)(\cdot)$$

2 Marginalize representer weights belief: $p(f(\cdot)) = \int p(f(\cdot) \mid \mathbf{v}_*) p(\mathbf{v}_*) d\mathbf{v}_* = \mathcal{GP}(f; \mu_i, k_i)$

Quantifying uncertainty arising from observing finite data and performing a finite amount of computation.

Goal: Approximate the Gaussian process posterior $f \mid \mathbf{y} \sim \mathcal{GP}(\mu_*, k_*)$. **Obtained**: Belief about representer weights $\mathbf{v}_* = \hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{v}_i, \boldsymbol{\Sigma}_i) = \mathcal{N}(\mathbf{v}_i, \hat{\mathbf{K}}^{-1} - \mathbf{C}_i)$

Idea: Propagate uncertainty about representer weights to posterior.

Pathwise form of posterior:
$$(f \mid \mathbf{y})(\cdot) \stackrel{d}{=} f(\cdot) + k(\cdot, \mathbf{X}) \underbrace{\hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu})}_{=\mathbf{v}_*} \stackrel{d}{=} (f \mid \mathbf{v}_*)(\cdot)$$

2 Marginalize representer weights belief: $p(f(\cdot)) = \int p(f(\cdot) \mid \mathbf{v}_*) p(\mathbf{v}_*) d\mathbf{v}_* = \mathcal{GP}(f; \mu_i, k_i)$

$$\mu_i(\cdot) = \mu(\cdot) + K(\cdot, \mathbf{X})\mathbf{v}_i$$

Quantifying uncertainty arising from observing finite data and performing a finite amount of computation.

Goal: Approximate the Gaussian process posterior $f \mid \mathbf{y} \sim \mathcal{GP}(\mu_*, k_*)$. **Obtained**: Belief about representer weights $\mathbf{v}_* = \hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{v}_i, \boldsymbol{\Sigma}_i) = \mathcal{N}(\mathbf{v}_i, \hat{\mathbf{K}}^{-1} - \mathbf{C}_i)$

Idea: Propagate uncertainty about representer weights to posterior.

Pathwise form of posterior:
$$(f \mid \mathbf{y})(\cdot) \stackrel{d}{=} f(\cdot) + k(\cdot, \mathbf{X}) \underbrace{\hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu})}_{=\mathbf{v}_*} \stackrel{d}{=} (f \mid \mathbf{v}_*)(\cdot)$$

2 Marginalize representer weights belief: $p(f(\cdot)) = \int p(f(\cdot) \mid \mathbf{v}_*) p(\mathbf{v}_*) d\mathbf{v}_* = \mathcal{GP}(f; \mu_i, k_i)$

$$\mu_{i}(\cdot) = \mu(\cdot) + K(\cdot, \mathbf{X})\mathbf{v}_{i}$$

$$k_{i}(\cdot, \cdot) = \underbrace{K(\cdot, \cdot) - K(\cdot, \mathbf{X})\hat{K}^{-1}K(\mathbf{X}, \cdot)}_{=\mathbb{E}((f(\cdot) - \mu_{i}(\cdot))^{2})} + \underbrace{K(\cdot, \mathbf{X})\boldsymbol{\Sigma}_{i}K(\mathbf{X}, \cdot)}_{=\mathbb{E}((\mu_{*}(\cdot) - \mu_{i}(\cdot))^{2})} = \underbrace{K(\cdot, \cdot) - K(\cdot, \mathbf{X})C_{i}K(\mathbf{X}, \cdot)}_{=\mathbb{E}((f(\cdot) - \mu_{i}(\cdot))^{2})}$$

$$= \underbrace{K(\cdot, \cdot) - K(\cdot, \mathbf{X})C_{i}K(\mathbf{X}, \cdot)}_{=\mathbb{E}((f(\cdot) - \mu_{i}(\cdot))^{2})}$$

$$= \underbrace{K(\cdot, \cdot) - K(\cdot, \mathbf{X})C_{i}K(\mathbf{X}, \cdot)}_{=\mathbb{E}((f(\cdot) - \mu_{i}(\cdot))^{2})}$$

$$= \underbrace{K(\cdot, \cdot) - K(\cdot, \mathbf{X})C_{i}K(\mathbf{X}, \cdot)}_{=\mathbb{E}(f(\cdot) - \mu_{i}(\cdot))^{2}}$$

$$= \underbrace{K(\cdot, \cdot) - K(\cdot, \mathbf{X})C_{i}K(\mathbf{X}, \cdot)}_{=\mathbb{E}(f(\cdot) - \mu_{i}(\cdot))^{2}}$$

$$= \underbrace{K(\cdot, \cdot) - K(\cdot, \mathbf{X})C_{i}K(\mathbf{X}, \cdot)}_{=\mathbb{E}(f(\cdot) - \mu_{i}(\cdot))^{2}}$$

$$= \underbrace{K(\cdot, \cdot) - K(\cdot, \mathbf{X})C_{i}K(\mathbf{X}, \cdot)}_{=\mathbb{E}(f(\cdot) - \mu_{i}(\cdot))^{2}}$$

$$= \underbrace{K(\cdot, \cdot) - K(\cdot, \mathbf{X})C_{i}K(\mathbf{X}, \cdot)}_{=\mathbb{E}(f(\cdot) - \mu_{i}(\cdot))^{2}}$$

$$= \underbrace{K(\cdot, \cdot) - K(\cdot, \mathbf{X})C_{i}K(\mathbf{X}, \cdot)}_{=\mathbb{E}(f(\cdot) - \mu_{i}(\cdot))^{2}}$$

$$= \underbrace{K(\cdot, \cdot) - K(\cdot, \mathbf{X})C_{i}K(\mathbf{X}, \cdot)}_{=\mathbb{E}(f(\cdot) - \mu_{i}(\cdot))^{2}}$$

$$= \underbrace{K(\cdot, \cdot) - K(\cdot, \mathbf{X})C_{i}K(\mathbf{X}, \cdot)}_{=\mathbb{E}(f(\cdot) - \mu_{i}(\cdot))^{2}}$$

$$= \underbrace{K(\cdot, \cdot) - K(\cdot, \mathbf{X})C_{i}K(\mathbf{X}, \cdot)}_{=\mathbb{E}(f(\cdot) - \mu_{i}(\cdot))^{2}}$$

$$= \underbrace{K(\cdot, \cdot) - K(\cdot, \mathbf{X})C_{i}K(\mathbf{X}, \cdot)}_{=\mathbb{E}(f(\cdot) - \mu_{i}(\cdot))^{2}}_{=\mathbb{E}(f(\cdot) - \mu_{i}(\cdot))^{2}}$$

$$= \underbrace{K(\cdot, \cdot) - K(\cdot, \mathbf{X})C_{i}K(\mathbf{X}, \cdot)}_{=\mathbb{E}(f(\cdot) - \mu_{i}(\cdot))^{2}}_{=\mathbb{E}(f(\cdot) - \mu_{i}(\cdot))^$$

Interpreting computational and combined uncertainty as error quantification.

IterGP-PI

Interpreting computational and combined uncertainty as error quantification.

IterGP-PI

Interpreting computational and combined uncertainty as error quantification.

Interpreting computational and combined uncertainty as error quantification.

IterGP-PI

Interpreting computational and combined uncertainty as error quantification.

IterGP-PI

1	procedure ITERGP($\mu, K, X, y, C_0 = 0$)		Time	Space
2	while not StoppingCriterion() do			
3	$s_i \leftarrow Policy()$	Select action via policy.		
4	$\mathbf{r}_{i-1} \leftarrow (\mathbf{y} - \mathbf{\mu}) - \hat{\mathbf{K}} \mathbf{v}_{i-1}$	Residual.	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
5	$\alpha_i \leftarrow \mathbf{s}_i^{T} \mathbf{r}_{i-1}$	Observation.	$\mathcal{O}(n)$	$\mathcal{O}(1)$
б	$\mathbf{z}_i \leftarrow \hat{\mathbf{K}} \mathbf{s}_i$		$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
7	$d_i \leftarrow \Sigma_{i-1} \hat{K} s_i = s_i - C_{i-1} z_i$	Search direction.	$\mathcal{O}(ni)$	$\mathcal{O}(n)$
8	$\eta_i \leftarrow s_i^{T} \hat{K} \Sigma_{i-1} \hat{K} s_i = \mathbf{z}_i^{T} \mathbf{d}_i$		$\mathcal{O}(n)$	$\mathcal{O}(1)$
9	$oldsymbol{\mathcal{C}}_i \leftarrow oldsymbol{\mathcal{C}}_{i-1} + rac{1}{\eta_i}oldsymbol{d}_i^{ op}$	Precision matrix approx. $\mathcal{C}_i pprox \hat{\mathcal{K}}^{-1}$.	$\mathcal{O}(n)$	$\mathcal{O}(ni)$
10	$\mathbf{v}_i \leftarrow \mathbf{v}_{i-1} + rac{lpha_i}{m_i} \mathbf{d}_i$	Representer weights estimate.	$\mathcal{O}(n)$	$\mathcal{O}(n)$
11	$\Sigma_i \leftarrow \Sigma_0 - C_i$	Representer weights uncertainty.		
12	$\mu_i(\cdot) \leftarrow \mu(\cdot) + \mathcal{K}(\cdot, \mathbf{X}) \mathbf{v}_i$	Approximate posterior mean.	$\mathcal{O}(n_\diamond n)$	$\mathcal{O}(n_\diamond)$
13	$K_i(\cdot, \cdot) \leftarrow K(\cdot, \cdot) - K(\cdot, \mathbf{X}) C_i K(\mathbf{X}, \cdot)$	Combined covariance function.	O(n₀ni)	$\mathcal{O}(n_{\diamond}^2)$
14	return $\mathcal{GP}(\mu_i, K_i)$			

Theoretical Analysis

Uncertainty as a tight bound on the relative error

Theorem (Kanagawa et al. [Kan+18])

$$\sup_{g \in \mathcal{H}_{k^{\sigma}}: \|g\|_{\mathcal{H}_{k^{\sigma}}} \leq 1} \quad \underbrace{g(\mathbf{x}) - \mu_*^g(\mathbf{x})}_{\text{error of math. post. mean } \bullet} = \sup_{g \in \mathcal{H}_{k^{\sigma}}} \frac{|g(\mathbf{x}) - \mu_*^g(\mathbf{x})|}{\|g\|_{\mathcal{H}_{k^{\sigma}}}} = \sqrt{k_*(\mathbf{x}, \mathbf{x}) + \sigma^2}$$

Theoretical Analysis

Uncertainty as a tight bound on the relative error.

Theorem (Kanagawa et al. [Kan+18])

$$\sup_{g \in \mathcal{H}_{k^{\sigma}}: \|g\|_{\mathcal{H}_{k^{\sigma}}} \le 1} \quad \underbrace{g(\mathbf{x}) - \mu_*^g(\mathbf{x})}_{\text{error of math. post. mean } \bullet} = \sup_{g \in \mathcal{H}_{k^{\sigma}}} \frac{|g(\mathbf{x}) - \mu_*^g(\mathbf{x})|}{\|g\|_{\mathcal{H}_{k^{\sigma}}}} = \sqrt{k_*(\mathbf{x}, \mathbf{x}) + \sigma^2}$$

Theorem (Wenger et al. [Wen+22]) $\sup_{g \in \mathcal{H}_{k^{\sigma}}: ||g||_{\mathcal{H}_{k^{\sigma}}} \leq 1} \underbrace{g(x) - \mu_{*}^{g}(x)}_{\text{error of math. post. mean }} + \underbrace{\mu_{*}^{g}(x) - \mu_{i}^{g}(x)}_{\text{computational error }} = \sqrt{k_{i}(x, x) + \sigma^{2}}$

Theoretical Analysis

Uncertainty as a tight bound on the relative error.

Theorem (Kanagawa et al. [Kan+18])

$$\sup_{g \in \mathcal{H}_{k^{\sigma}}: \|g\|_{\mathcal{H}_{k^{\sigma}}} \le 1} \quad \underbrace{g(\mathbf{x}) - \mu_*^g(\mathbf{x})}_{\text{error of math. post. mean } \bullet} = \sup_{g \in \mathcal{H}_{k^{\sigma}}} \frac{|g(\mathbf{x}) - \mu_*^g(\mathbf{x})|}{\|g\|_{\mathcal{H}_{k^{\sigma}}}} = \sqrt{k_*(\mathbf{x}, \mathbf{x}) + \sigma^2}$$

Theorem (Wenger et al. [Wen+22]) $\sup_{g \in \mathcal{H}_{k^{\sigma}} : ||g||_{\mathcal{H}_{k^{\sigma}}} \le 1} \underbrace{g(x) - \mu_{*}^{g}(x)}_{\text{error of math. post. mean }} + \underbrace{\mu_{*}^{g}(x) - \mu_{i}^{g}(x)}_{\text{computational error }} = \sqrt{k_{i}(x, x) + \sigma^{2}}$

Exact quantification of uncertainty from limited data and limited computation.

Probabilistic Linear Solvers - Jonathan Wenger - April 10, 2024

IterGP-Cholesky IterGP-CG	Actions s_i $\hat{P}^{-1}r_i$ $k(\mathbf{X}, \mathbf{z}_i)$	Classic Analog (Partial) Cholesky / Subset of data (Preconditioned) CG \approx SVGP	
IterGP-PseudoInput $k(X, z_i)$ Computational Uncertainty		≈ SVGP Combined Uncertainty	

IterGP-Cholesky	Actions s _i e _i	Classic Analog (Partial) Cholesky / Subset of data	
lterGP-CG IterGP-PseudoInput	$\hat{P}^{-1}r_i$ k(X, z_i)	(Preconditioned) CG \approx SVGP	
Computational Unce	ertainty	Combined Uncertainty	
i=2			

IterGP-Cholesky IterGP-CG IterGP-PseudoInput	Actions s_i e_i $\hat{P}^{-1}r_i$ $k(X, z_i)$	Classic Analog (Partial) Cholesky / Subset of data (Preconditioned) CG ≈ SVGP
Computational Unce	rtainty	Combined Uncertainty
i = 4		

IterGP-Cholesky	Actions <i>s</i> _i e _i	Classic Analog (Partial) Cholesky / Subset of data
lterGP-CG IterGP-PseudoInput	$\hat{P}^{-1}r_i$ k(X, z_i)	(Preconditioned) CG ≈ SVGP
Computational Unce	ertainty	Combined Uncertainty

	Actions s i	Classic Analog
IterGP-Cholesky IterGP-CG IterGP-PseudoInput	$\hat{\boldsymbol{P}}^{-1}\boldsymbol{r}_{i}$ $\boldsymbol{k}(\boldsymbol{X},\boldsymbol{z}_{i})$	(Partial) Cholesky / Subset of data (Preconditioned) CG \approx SVGP
Computational Uncertainty		Combined Uncertainty
i = 1		

	Actions s i	Classic Analog
IterGP-Cholesky IterGP-CG IterGP-PseudoInput	$\hat{\boldsymbol{P}}^{-1}\boldsymbol{r}_{i}$ $\boldsymbol{k}(\boldsymbol{X},\boldsymbol{z}_{i})$	(Partial) Cholesky / Subset of data (Preconditioned) CG \approx SVGP
Computational Uncertainty		Combined Uncertainty
i = 2		

	Actions s _i	Classic Analog
lterGP-Cholesky IterGP-CG IterGP-PseudoInput	$\hat{\boldsymbol{P}}^{-1}\boldsymbol{r_i}$ $k(\boldsymbol{X}, \boldsymbol{z_i})$	(Partial) Cholesky / Subset of data (Preconditioned) CG \approx SVGP
Computational Uncertainty		Combined Uncertainty
i = 4		

	Actions s i	Classic Analog
lterGP-Cholesky IterGP-CG IterGP-PseudoInput	$\hat{\boldsymbol{p}}^{-1}\boldsymbol{r_i}$ $k(\boldsymbol{X},\boldsymbol{z_i})$	(Partial) Cholesky / Subset of data (Preconditioned) CG \approx SVGP
Computational Uncertainty		Combined Uncertainty

	Actions s i	Classic Analog
lterGP-Cholesky lterGP-CG lterGP-PseudoInput	$\hat{P}^{-1}r_i \\ k(\pmb{X},\pmb{z}_i)$	(Partial) Cholesky / Subset of data (Preconditioned) CG ≈ SVGP
Computational Uncertainty		Combined Uncertainty
i = 1		

Quantifying computational uncertainty improves generalization of inducing point methods like SVGF

SVGP versus IterGP-PI

Quantifying computational uncertainty improves generalization of inducing <u>point methods like SVG</u>F

÷ +

SVGP versus IterGP-PI

Quantifying computational uncertainty improves generalization of inducing point methods like SVGF

What about optimizing inducing point locations?

[Tit09; HFL13]

÷)(+

SVGP versus IterGP-PI

Quantifying computational uncertainty improves generalization of inducing point methods like SVGF

What about **computational cost**? SVGP: $\mathcal{O}(ni^2)$ versus IterGP: $\mathcal{O}(n^2i)$.

Probabilistic Linear Solvers - Jonathan Wenger - April 10, 2024

÷)(+

Training Gaussian Processes on Large-Scale Data

Kernel hyperparameter optimization with SVGP and IterGP on a problem with $npprox 4\cdot 10^5$ data points.

[Wen+24, Unpublished work]

Training Gaussian Processes on Large-Scale Data

Kernel hyperparameter optimization with SVGP and IterGP on a problem with $npprox 4\cdot 10^5$ data points.

[Wen+24, Unpublished work]

Faster large-scale Gaussian processes with better generalization!

Other Applications

Extending these ideas beyond what we've seen.

Spatiotemporal Modeling

Spatio-temporal regression of Earth surface temperature via computation-aware filtering and smoothin

[Pfö+24, Unpublished Work]

Physics-Informed GP Regression

Learning to solve linear partial differential equations.

Generalized Linear Models

Gaussian process classification with IterGLM using two different policies.

 x_1

Summary

► Large-scale linear systems are ubiquitous in scientific computation.

Summary

- ► Large-scale linear systems are ubiquitous in scientific computation.
- > Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Summary

- Large-scale linear systems are ubiquitous in scientific computation.
- > Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Application: Gaussian Processes

Large-scale GP models are often as much about the approximation as they are about the data.

Summary

- Large-scale linear systems are ubiquitous in scientific computation.
- > Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Application: Gaussian Processes

Large-scale GP models are often as much about the approximation as they are about the data.

Summary

- ► Large-scale linear systems are ubiquitous in scientific computation.
- > Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Application: Gaussian Processes

- ► Large-scale GP models are often as much about the approximation as they are about the data.
- We can exactly quantify the error from finite data and from the approximation via a combined uncertainty estimate. \Rightarrow IterGP

Summary

- ► Large-scale linear systems are ubiquitous in scientific computation.
- > Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Application: Gaussian Processes

- Large-scale GP models are often as much about the approximation as they are about the data.
- We can exactly quantify the error from finite data and from the approximation via a combined uncertainty estimate. \Rightarrow IterGP
- **Explicit trade-off** between computation and uncertainty via probabilistic linear solver.

Summary

- Large-scale linear systems are ubiquitous in scientific computation.
- ▶ Probabilistic linear solvers allow us to explicitly trade off speed for precision.

Application: Gaussian Processes

- Large-scale GP models are often as much about the approximation as they are about the data.
- We can exactly quantify the error from finite data and from the approximation via a combined uncertainty estimate. \Rightarrow IterGP
- Explicit trade-off between computation and uncertainty via probabilistic linear solver.

Open Research Questions / Future Directions

- ► Calibration.
- Policy design for downstream tasks (Active learning, Bayesian optimization, ...).

▶ ...?

1 Introduction 2 Probabilistic Linear Solvers 2.1 Derivation 2.2 Policy Choice 2.3 Prior Choice 2.4 Algorithm 3 Application: Large-Scale Gaussian Processes 3.1 Gaussian Process Inference at Scale 3.2 Quantifying Approximation Error 3.3 Algorithm: IterGP 3.4 Theoretical Analysis 3.5 Policy Choice Illustrated 3.6 Experiments 4 Summary and Extensions

5 Additional Material 5.1 Calibration 5.2 An approximation method or a better model?

Additional Material

Why is uncertainty quantification sometimes conservative for probabilistic linear solvers?

Observation: Uncertainty quantification of probabilistic linear solvers can be conservative!

Figure: IterGP using a (conjugate) gradient policy.

Why is uncertainty quantification sometimes conservative for probabilistic linear solvers?

Observation: Uncertainty quantification of probabilistic linear solvers can be conservative!

Figure: IterGP using a (conjugate) gradient policy.

Why is that? We conditioned on $\alpha_i = \mathbf{s}_i^{\mathsf{T}} \mathbf{r}_{i-1} = \mathbf{s}_i^{\mathsf{T}} \mathbf{A} (\mathbf{x}_* - \mathbf{x}_{i-1}).$

But: We've "cheated" for a gradient policy, since $s_i = b - Ax_{i-1} = A(x_* - x_{i-1}) = s_i(x_*)$.

Then the posterior returned by IterGP for the dataset (X, y) using actions s_i is identical to the posterior returned by IterGP for the extended dataset using actions \tilde{s}_i :

ITERGP
$$(\mu, k, \mathbf{X}, \mathbf{y}, (\mathbf{s}_i)_i) = ITERGP\left(\mu, k, \begin{pmatrix} \mathbf{X} \\ \mathbf{X}' \end{pmatrix}, \begin{pmatrix} \mathbf{y} \\ \mathbf{y}' \end{pmatrix}, (\tilde{\mathbf{s}}_i)_i \right).$$

Probabilistic Linear Solvers - Jonathan Wenger - April 10, 2024

Theorem (Online GP Approximation with IterGP)

Let $n, n' \in \mathbb{N}$ and consider training data sets $X \in \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^{n}$ and $X' \in \mathbb{R}^{n' \times d}$, $y' \in \mathbb{R}^{n'}$. Consider two sequences of actions $(s_i)_{i=1}^n \in \mathbb{R}^n$ and $(\tilde{s}_i)_{i=1}^{n+n'} \in \mathbb{R}^{n+n'}$ such that

 $\tilde{s}_i = \begin{pmatrix} s_i \\ 0 \end{pmatrix}$

(1)

An alternative view of IterGP as a better model for the way we do inference instead of an approximation

Observation: Only once we perform computation on data, does it enter our prediction.

An alternative view of IterGP as a better model for the way we do inference instead of an approximation

Observation: Only once we perform computation on data, does it enter our prediction.

The distinction between data and computation vanishes.

An alternative view of IterGP as a better model for the way we do inference instead of an approximation

Observation: Only once we perform computation on data, does it enter our prediction.

The distinction between data and computation vanishes.

What if we modeled this situation with a Gaussian process?

 $\begin{aligned} & f \sim \mathcal{GP}(\mu, k) \\ & \tilde{\mathbf{y}} \mid f(\mathbf{X}) \sim \mathcal{N} \left(\mathbf{S}_i^{\mathsf{T}} f(\mathbf{X}), \sigma^2 \mathbf{S}_i^{\mathsf{T}} \mathbf{S}_i \right) \\ & f \mid \mathbf{X}, \tilde{\mathbf{y}} \sim \mathcal{GP}(\mu_i, k_i) \end{aligned}$

An alternative view of IterGP as a better model for the way we do inference instead of an approximation.

Observation: Only once we perform computation on data, does it enter our prediction.

The distinction between data and computation vanishes.

What if we modeled this situation with a Gaussian process?

 $\begin{aligned} & f \sim \mathcal{GP}(\mu, k) \\ & \tilde{\mathbf{y}} \mid f(\mathbf{X}) \sim \mathcal{N} \left(\mathbf{S}_i^{\mathsf{T}} f(\mathbf{X}), \sigma^2 \mathbf{S}_i^{\mathsf{T}} \mathbf{S}_i \right) \\ & f \mid \mathbf{X}, \tilde{\mathbf{y}} \sim \mathcal{GP}(\mu_i, k_i) \end{aligned}$

IterGP's combined posterior is equivalent to exact GP regression for linearly projected data.

References I

- E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and P. Hennig. Laplace Redux – Effortless Bayesian Deep Learning. 2022. DOI: 10.48550/arXiv.2106.14806. URL: http://arxiv.org/abs/2106.14806 (cit. on p. 7).
 - P. Hennig, M. A. Osborne, and M. Girolami. "Probabilistic numerics and uncertainty in computations". In: *Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences* 471.2179 (2015) (cit. on pp. 9–12).
 - J. Cockayne, C. J. Oates, T. J. Sullivan, and M. Girolami. "Bayesian Probabilistic Numerical Methods". In: *SIAM Review* 61.4 (2019), pp. 756–789. DOI: 10.1137/17M1139357 (cit. on pp. 9–12).
 - P. Hennig, M. A. Osborne, and H. P. Kersting. *Probabilistic Numerics: Computation as Machine Learning*. CUP, 2022. ISBN: 978-1-316-68141-1. DOI: 10.1017/9781316681411 (cit. on pp. 9–12).
 - P. Hennig. "Probabilistic Interpretation of Linear Solvers". In: *SIAM Journal on Optimization* 25.1 (2015), pp. 234–260 (cit. on pp. 9–21).

References II

- J. Cockayne, C. J. Oates, I. C. Ipsen, and M. Girolami. "A Bayesian Conjugate Gradient Method (with Discussion)". In: *Bayesian Analysis* 14.3 (2019), pp. 937–1012. DOI: 10.1214/19-BA1145 (cit. on pp. 9–23, 28, 30, 31).
 - J. Wenger and P. Hennig. "Probabilistic Linear Solvers for Machine Learning". In: Advances in Neural Information Processing Systems (NeurIPS). 2020 (cit. on pp. 9–12).
 - J. Wenger, G. Pleiss, M. Pförtner, P. Hennig, and J. P. Cunningham. "Posterior and Computational Uncertainty in Gaussian Processes". In: *Advances in Neural Information Processing Systems (NeurIPS)*. 2022 (cit. on pp. 28, 48–59, 66–68, 102).
 - L. N. Trefethen and D. Bau. *Numerical Linear Algebra*. Society for Industrial and Applied Mathematics (SIAM), 1997 (cit. on p. 29).
 - M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur. *Gaussian processes and kernel methods: A review on connections and equivalences*. 2018. arXiv: 1807.02582 (cit. on pp. 66–68).

- M. Titsias. "Variational learning of inducing variables in sparse Gaussian processes". In: International Conference on Artificial Intelligence and Statistics (AISTATS). 2009 (cit. on pp. 81–84).
- J. Hensman, N. Fusi, and N. D. Lawrence. "Gaussian processes for big data". In: *Conference on Uncertainty in Artificial Intelligence (UAI)*. 2013 (cit. on pp. 81–84).
 - M. Pförtner, I. Steinwart, P. Hennig, and J. Wenger. *Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers*. 2023. DOI: 10.48550/arXiv.2212.12474. URL: http://arxiv.org/abs/2212.12474 (cit. on p. 89).
 - L. Tatzel, J. Wenger, F. Schneider, and P. Hennig. *Accelerating Generalized Linear Models by Trading off Computation for Uncertainty*. 2023. DOI: 10.48550/arXiv.2310.20285. URL: http://arxiv.org/abs/2310.20285 (cit. on p. 90).