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1: Motivation



Partial Differential Equations

• PDEs are everywhere… 

• …but they are very hard to solve.



The Heat Equation

What is a PDE?

Unknown function

Initial Condition

(Dirichlet)  
Boundary Condition

∂u
∂t

=
∂2u
∂x2

u : [0,1] × [0,T] → ℝ
u = u(x, t)

u(0) = a
u(1) = b

u(x,0) = u0(x)

x ∈ (0,1), t ∈ (0,T]



PDEs Can Simulate Physical Processes



1.1: PDEs are Everywhere in 
Scientific Computing



Example 1: Engineering

• Elasticity equations 

• Mechanical behaviour of buildings and structures.

∇ ⋅ σ + F = ρ··u

ϵ =
1
2

[∇u + ∇u⊤]

σ = C : ϵ

Displacement  
Strain  
Stress  
Stiffness  
Force/volume 

u
ϵ
σ

C
F



Example 2: Finance

• Call option on underlying asset  

• Expires at , “Strike Price”  

• Pays off .  

• Denote the “Value” of the call as  for any . 

• What is ?

S

T K

max(S(T) − K,0)

V(S, t) 0 ≤ t ≤ T

V(S(0),0)
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Example 2: Finance

• What is the (expected) value of this asset  for ? 

• Assume the price of a stock follows geometric Brownian motion: 

 

• Black-Scholes Formula: 

V(S, t) t ∈ [0,T)

dS = μS dt + σS dWt

∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2

+ rS
∂V
∂S

− rV = 0

V(T, S) = VT(S)
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Example 3: Weather and Climate Modelling

• Ocean + Air modelled as coupled fluids using Navier-Stokes: 

 

• Numerical implementation is “Computational Fluid Dynamics”. 

• Simulate forward to predict weather and climate.

ρ ( ∂v
∂t

+ v ⋅ ∇v) = − ∇p + ∇ ⋅ T + f



1.2: PDEs are Hard to Solve



How are PDEs Usually Solved?

• Represent the domain with a grid or mesh. 

• Represent a solution on the mesh. 

• Approximate the PDE. 

• Solve the resulting (discrete) equations 

• This incurs “discretisation error” ∥u − uN∥

u ≈ uN :=
N

∑
i=1

wiϕi(x)

Calculate “best” wi

Linear System / Objective Function



Discretisation Error



This is what PN is for! 
(But there is a huge gap)



2. Generalising GP Regression



Recap: GP Regression

• We suppose we have a GP Prior: 

 

• Condition on observations . Let : 

u ∼ 𝒢𝒫(m, k)

u(xi) = ui 𝒟 := {(xi, ui)}n
i=1

u ∣ 𝒟 ∼ 𝒢𝒫(m̄, k̄)
m̄(x) = m(x) + k(x, X)K(X, X)−1(u − m(X))

k̄(x, x′￼) = k(x, x′￼) − k(x, X)K(X, X)−1k(X, x′￼)



Under the Hood

• We can construct the conditional distribution because of joint Gaussianity: 

 

• This is multivariate Gaussian, so we can use the multivariate Gaussian conditioning 
formula:

[u(X)
u(X′￼)] ∼ 𝒩 ([m(X)

m(X′￼)], (k(X, X) k(X, X′￼)
k(X′￼, X) k(X′￼, X′￼)))

[U
Y] ∼ 𝒩 ([mU

mY], (
ΣUU ΣUY

Σ⊤
UY ΣYY))

U ∣ Y = y ∼ 𝒩(m̄, Σ̄)
m̄ = mU + ΣUYΣ−1

YY(y − μY)
Σ̄ = ΣUU − ΣUYΣ−1

YYΣ⊤
UY

⟹



Key Observation: 
We can do this anywhere we get joint 

Gaussianity.



Generalising Observations

• Encapsulate information provided in an “information operator”  

• If  is a (suitable*) linear operator we have: 

𝒜 : 𝒰 → ℝn

𝒜

[u(X)
𝒜u ] ∼ 𝒩 ([m(X)

𝒜m ], ( k(X, X) k(X, ⋅ )𝒜†

𝒜k( ⋅ , X) 𝒜k𝒜† ))

* Matsumoto, T., & Sullivan, T. J. (2023). Images of Gaussian and other stochastic processes under closed, densely-
defined, unbounded linear operators (Version 5). arXiv. https://doi.org/10.48550/ARXIV.2305.03594



The Adjoint in the Room

• The previous slide had terms like  and  

• Technically  is the adjoint of . 

• We don’t need to worry about that - it just “operates on the second argument”. 

• E.g…. 

• Considering … 

•

k(X, ⋅ )𝒜† 𝒜k𝒜†

𝒜† 𝒜

k(x, x′￼)

𝒜u =
du
dx

(0.5) ⟹ k(X, ⋅ )𝒜† =
dk
dx′￼

(X,0.5)



Linking to GP Regression

• E.g. in GP regression: 

 

• As a result,  as expected.

𝒜u =
δx1

u
⋮

δxn
u

=
u(x1)

⋮
u(xn)

𝒜k𝒜† = k(X, X)



General Conditional Distribution

u(X) ∣ 𝒜u = y ∼ 𝒩(m̄(X), k̄(X, X))
m̄(x) = m(x) + k(x, ⋅ )𝒜†[𝒜k𝒜†]−1(y − 𝒜m)

k̄(x, x′￼) = k(x, x′￼) + k(x, ⋅ )𝒜†[𝒜k𝒜†]−1𝒜k( ⋅ , x′￼)

Pförtner, M., Steinwart, I., Hennig, P., & Wenger, J. (2022). Physics-Informed Gaussian Process Regression 
Generalizes Linear PDE Solvers (Version 5). arXiv. https://doi.org/10.48550/ARXIV.2212.12474



Illustration: Conditioning on Derivatives



3: Probabilistic PDE Solvers



We just need to adapt  to the 
problem at hand.

𝒜



Let’s Solve a PDE

• Consider the canonical linear elliptic PDE with Dirichlet Boundary Conditions:

−∇ ⋅ (κ(x)∇u(x)) = f(x) x ∈ D
u(x) = b(x) x ∈ ∂D

Given

Unknown





Let’s Solve a PDE

• Consider the canonical linear elliptic PDE with Dirichlet Boundary Conditions:

ℒ1u = f x ∈ D
ℒ2u = b x ∈ ∂D(ℒ1u = − ∇ ⋅ (κ(x)∇u(x))

ℒ2u = u )



A Natural Information Operator

Let’s Solve a PDE

D

∂D
𝒟 = {(x1

1 , f(x1
1)), …, (x1

N1
, f(x1

N1
))}

⋃

{(x2
1 , b(x2

1)), …, (x2
N2

, b(x2
N2

))}



Information Operator

ℒ1u = f x ∈ D
ℒ2u = b x ∈ ∂D

𝒜 :=

δx1
1

∘ ℒ1

⋮
δx1

N1
∘ ℒ1

δx2
1

∘ ℒ2

⋮
δx2

N2
∘ ℒ2

=

𝒜1

𝒜2



u(X)
𝒜1u
𝒜2u

∼ 𝒩
m(X)
𝒜1m
𝒜2m

,
k(X, X) k(X, ⋅ )𝒜†

1 k(X, ⋅ )𝒜†
2

𝒜1k( ⋅ , X) 𝒜1k𝒜†
1 𝒜1k𝒜†

2

𝒜2k( ⋅ , X) 𝒜1k𝒜†
2 𝒜2k𝒜†

2

u(X) ∣ 𝒜u = y ∼ 𝒩(m̄(X), k̄(X, X))
m̄(x) = m(x) + k(x, ⋅ )𝒜†[𝒜k𝒜†]−1(y − 𝒜m)

k̄(x, x′￼) = k(x, x′￼) + k(x, ⋅ )𝒜†[𝒜k𝒜†]−1𝒜k( ⋅ , x′￼)

[u(X)
𝒜u ] ∼ 𝒩 ([m(X)

𝒜m ], ( k(X, X) k(X, ⋅ )𝒜†

𝒜k( ⋅ , X) 𝒜k𝒜† ))



Probabilistic PDE Solver

• We then have the following: 

 

• The above is our probabilistic PDE solver…!

u(X) ∣ 𝒜u = y ∼ 𝒩(m̄(X), k̄(X, X))
m̄(X) = m(X) + k(X, ⋅ )𝒜†[𝒜k𝒜†]−1(y − 𝒜m)

k̄(X, X) = k(X, X) − k(X, ⋅ )𝒜†[𝒜k𝒜†]−1𝒜k( ⋅ , X)



Illustration: Probabilistic PDE Solver

• See also https://github.com/marvinpfoertner/linpde-gp.



4: A Tiny Bit of Theory



What about UQ?

Suppose that (in addition to some technical assumptions): 

•  for some  

• The RKHS  is equivalent to  

Then we have the error bound:

u ∈ ℍβ(D) β > d/2

Hk(D) ℍβ(D)

|u(x) − m̄(x) | ≤ k̄(x, x)1
2∥u − m∥Hk(D)



Fill Distance

h
D



What About Convergence?

Consider the fill distance 

Let  denote the differential order of the PDE. Then it holds that ρ < β − d/2

h = sup
x∈D

min
x′￼∈𝒟

∥x − x′￼∥2

k̄(x, x)1
2 ≤ Chβ−ρ−d/2



Generalising

• We focussed on point evaluation. Things can be made (much) more general. 

• The first result holds much more generally.  

• Fill-distance-based bounds are much trickier to derive for non-point-evaluation based .𝒜

Pförtner, M., Steinwart, I., Hennig, P., & Wenger, J. (2022). Physics-Informed Gaussian Process Regression 
Generalizes Linear PDE Solvers (Version 5). arXiv. https://doi.org/10.48550/ARXIV.2212.12474



5: Inverse Problems



Bayesian Inverse Problems

• Suppose we have data: 

 

• Calculate / approximate the posterior distribution: 

y = 𝒢(θ) + ζ

p(θ ∣ y) =
p(y ∣ 𝒢(θ))p(θ)

p(y)



High accuracy (slow) solution High error (fast) solution PN Solvers

Robust to approximation error



Hydrocyclones

High-pressure, 

contaminated fluid

Clean fluid

Contaminants



Electrical Impedance Tomography

Curr
en

t

Vo
lta

ge
 

Electrodes

Contaminant

y

θ†

y = 𝒢(θ†) + ζ

“Data-generating model”

A (more complex) linear 
elliptic PDE



Putting PNM into Inference Problems

p(y ∣ θ, u†
θ )

“Inflate” likelihood by error in PNM. 

In some cases can be done explicitly.

Latent solution to PDE in 𝒢(θ)

p𝖯𝖭(y ∣ θ) = ∫ p(y ∣ θ, u) p(u ∣ 𝒟, θ) du
PN solution to PDE
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Equipment Oates, Cockayne, Aykroyd & Girolami, Journal of the American Statistical Association (2019) 



Conclusions



A Blueprint for Bayesian PNM?

• “We just need to specify .” 

• For nonlinear  this is (ridiculously) harder…!

𝒜

𝒜



Thanks!


