Propapilistic PDE Solvers




Ooverview

1. Get Motivated

2. Generalising GP Regression
3. Probabilistic PDE Solvers

4. A Tiny Bit of Theory

5. Inverse Problems



1: Motivation




Partial

Dir

ferentia

~quations

- PDEs are everywhere...

. ...but they are very hard to solve.



Whatisa PDE?

The Heat Equation

| u: [0,1] %X [0,7] - R
Unknown function

\/ u = u(x,1)

2
u _ou x € (0,1), 1€ (0,T]
ot  0x?
Initial Condition u(x,0) = uy(x)

u(l) =>b (Dirichlet)

Boundary Condition
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1.1: PDEs are Everywhnere in
Scientific Computing




Example 1: Engineering

. Elasticity equations V-o+F =pii

1
| | - e=—[Vu+Vu']
- Mechanical behaviour of buildings and structures. 2
c=C:c¢€

Displacement u
Strain €

Stress o
Stiffness C
Force/volume F




Example 2: Finance

. Call option on underlying asset

. Expires at T’ “Strike Price” K

. Pays off max(S(7T) — K,0).

. Denote the “Value” of the call as V(S, ¢) forany 0 <t < T.

. Whatis V(5(0),0)?
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Exampl

e - Filnance

. What is the (expected) value of this asset V(S, 1) fort € [0,7T)?

- Assume the price of a stock follows geometric Brownian motion:

. Black-Scholes Formula:

dS = uS dt + oS dW,

2
2 OV

05

2+rS

oV
— =7V =0
0S

VT, 5) = Vi(S5)
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Example 3: Weather and Climate Modelling

- Ocean + Air modelled as coupled fluids using Navier-Stokes:

0
p(a—‘;+v-Vv> =—Vp+ V- -T+f

- Numerical implementation is “Computational Fluid Dynamics”

- Simulate forward to predict weather and climate.




12: PDEs are Hard to Solve




OW are r

-3 Usua.

D)

Represent the domain with a grid or mesh.

Represent a solution on the mesh.

Approximate the PDE.

Solve the resulting (discrete) equations

This incurs “discretisation error” ||u — uy|]
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The Difference Resolution Makes

From the first Intergovernmental Panel on Climate Change (IPCC) report
in 1990 to the fourth assessment in 2007, the resolution of climate
modeling improved significantly, allowing scientists to get a more
detailed picture of climate changes.

SOURCE: University Corporation for Atmospheric Research (UCAR) InsideClimate News



'nis is what PN 1s for!

(But there is a huge gap)




2. Generalising GP Regression




Recap: GP Regression

- We suppose we have a GP Prior:
u ~ GP(m, k)

. Condition on observations u(x;) = u;. Let & = {(x;, u;) }._:

ul| D ~ Pm, k)
m(x) = m(x) + k(x, X)KX, X)"'(u = m(X))
k(x, x") = k(x,x") — k(x, X)K(X, X)"'k(X, x)



Under the Hood

- We can construct the conditional distribution because of joint Gaussianity:
u(X) " m(X) k(X,X) k(XX
u(X") mX)|  \ kX, X) kX, 6 X

- This is multivariate Gaussian, so we can use the multivariate Gaussian conditioning
formula:

U|lY=y~ Nin,2)

-G s) =

)

my + ZUYZI_/Ilf(y — Uy)

ZUU o ZUYEI_’Il’Z-ll}Y



Key Opservation:
We can do this anywnere we get joint
(Gaussianity.




Generalising Observations

. Encapsulate information provided in an “information operator” & : % — R”

. If & is a (suitable*) linear operator we have:

[u(X)] o [m(X)] kX, X) kX, )"
Au dam |\ dk(-,X) k'

*Matsumoto, T., & Sullivan, T. J. (2023). Images of Gaussian and other stochastic processes under closed, densely-
defined, unbounded linear operators (Version 5). arXiv. https://doi.org/1048550/ARXIV.2305.03594




The Adjoint in the Room

. The previous slide had terms like k(X, - )T and oAkt

. Technically &/ is the adjoint of <f.

- We don’t need to worry about that - it just “operates on the second argument”.

- £.0....

. Considering k(x, x")...

d dk
L05) = kX, o' =

. Ju
dx dx’

(X,0.5)



Linking to GP Regression

- £.g.1n GP regression:

. As aresult, k" = k(X, X) as expected.



General Conaitional Distripbution

uX) | du =y~ NmX), kX, X))
m(x) = m(x) + k(x, A [Akd T Ny — A m)
k(x, x") = k(x,x) + k(x, - ) [ALkA T Ak( -, x)

Piortner, M., Steinwart, I., Hennig, P., & Wenger, J. (2022). Physics-

nformed Gaussian Process Regression

(Generalizes Linear PD]

= Solvers (Version b). arXiv. https://doi.org/:

048550/ARXIV.2212.12474
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[lustration: Conditioning on Derlvatives




3: Propabilistic PDE Solvers




We just need to adapt & to the
proplem at handa




[.ets Solve a PDE

- Consider the canonical linear elliptic PDE with Dirichlet Boundary Conditions:

-V (x) V \ x€eD

L o
N 1%

)< b(x) xe€oD
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[.ets Solve a PDE

- Consider the canonical linear elliptic PDE with Dirichlet Boundary Conditions:

Su=f [XeubB=—V - (K(x)Vu(x))
Sou=0>b Sfﬁta_pu
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u(X) | du =y~ NnX), kX, X))
m(x) = m(x) + k(x, )AL [k (y — Am)
k(x,x") = k(x,x") + k(x, A [kt k(- , x")

[u(X)] o [m(X)] kX, X) kX, )"
Au dadm |\ dlk(-,X) ok’

u(X) m(X) kX, X) k(X - )éﬂ k(X, - )5275
~N A m |, | k(. X) ko] k)

Ak(-,X) Ak,  AkdA]



Probabpilistic PDE Solver

- We then have the following:

uX) | du =y ~ NX), kX, X))
m(X) = mX) + kX, A [kt~ (y — o/m)
kX, X) = k(X,X) — kX, A Ak L Ak( -, X)

- The above is our probabilistic PDE solver...!



Cropapi.

[llustration: .
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- See also https://github.com/marvinproertner/linpde-gp.
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4. A Tiny Bit of Theory




What apout UQ?

Suppose that (in addition to some technical assumptions):

. u € HP(D) for some 8 > d/?2

he RKHS H (D) is equivalent to HP(D)

Then we have the error bound:

| u(x) — m(x)| < k(x, X)%HM — M|y ()



:l_j

| Distance




What About Convergence?

Consider the fill distance

h = supmin |[x — x|,
xeD xX'eY

Let p < f# — d/2 denote the differential order of the PDE. Then it holds that

k(x, x)% < ChP=—r=d42



Generalising

- We focussed on point evaluation. Things can be made (much) more general.

 The first result holds much more generally.

. Fill-distance-based bounds are much trickier to derive for non-point-evaluation based &

Piortner, M., Steinwart, I., Hennig, P., & Wenger, J. (2022). Physics-Informed Gaussian Process Regression
Generalizes Linear PDE Solvers (Version 5). arXiv. https://doi.org/10.48550/ARXIV.2212.12474




5: Inverse Proplems




Bayesian Inverse Proplems

¢ SUpPPOSe we have data:

y=%6(0)+¢
« Calculate / approximate the posterior distribution:

p(y | €(0))p(0)
py)

p|y) =



PN Solvers

High accuracy (slow) solution High error (fast) solution Robust to approximation error

D |
—_t

D
—



VATOCYC.

Oles

‘ Clean fluid

! Contaminants
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cctrica

Impedance Tomograpny

“Data-generating model”

y=90"+¢

A (more complex) linear
elliptic PDE



Putting PNM into Inference Problems

K Latent solution to PDE in &(60)
p(y 16,1

/ PN solution to PDE
Pen(y | 0) = Jp(y | 0, 1) plu | 2.0) du

‘Inflate” likelihood by error in PNM.

INn some cases can be done explicitly.



Least Accurate Probabilistic Numerical Methods Most Accurate

Bayesian Probabilistic Numerical Methods in Time-Dependent State Estimation for Industrial Hydrocyclone
Equipment Oates, Cockayne, Aykroyd & Girolami, Journal of the American Statistical Association (2019)




Conclusions




A Blueprint tor Bayesian PNM?

. “We just need to specify &

. For nonlinear & this is (ridiculously) harder.. !



T'hanks!




