Probabilistic PDE Solvers

Jon Cockayne, ProbNum School 2024

Overview

1. Get Motivated
2. Generalising GP Regression
3. Probabilistic PDE Solvers
4. A Tiny Bit of Theory
5. Inverse Problems

1: Motivation

Partial Differential Equations

- PDEs are everywhere...
- ...but they are very hard to solve.

What is a PDE?
 The Heat Equation

1.1: PDEs are Everywhere in Scientific Computing

Example 1: Engineering

- Elasticity equations
- Mechanical behaviour of buildings and structures.

$$
\begin{aligned}
\nabla \cdot \sigma+F & =\rho \ddot{u} \\
\epsilon & =\frac{1}{2}\left[\nabla u+\nabla u^{\top}\right] \\
\sigma & =C: \epsilon
\end{aligned}
$$

Displacement u
Strain ϵ
Stress σ
Stiffness C
Force/volume F

Example 2: Finance

- Call option on underlying asset S
- Expires at T, "Strike Price" K
- Pays off $\max (S(T)-K, 0)$.
- Denote the "Value" of the call as $V(S, t)$ for any $0 \leq t \leq T$.
- What is $V(S(0), 0)$?

Example 2: Finance

- What is the (expected) value of this asset $V(S, t)$ for $t \in[0, T)$?
- Assume the price of a stock follows geometric Brownian motion:

$$
d S=\mu S d t+\sigma S d W_{t}
$$

- Black-Scholes Formula:

$$
\begin{aligned}
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+r S \frac{\partial V}{\partial S}-r V & =0 \\
V(T, S) & =V_{T}(S)
\end{aligned}
$$

Example 3: Weather and Climate Modelling

- Ocean + Air modelled as coupled fluids using Navier-Stokes:

$$
\rho\left(\frac{\partial v}{\partial t}+v \cdot \nabla v\right)=-\nabla p+\nabla \cdot T+f
$$

- Numerical implementation is "Computational Fluid Dynamics".
- Simulate forward to predict weather and climate.

1.2: PDEs are Hard to Solve

How are PDEs Usually Solved?

- Represent the domain with a grid or mesh.
- Represent a solution on the mesh.
- Approximate the PDE.
- Solve the resulting (discrete) equations
- This incurs "discretisation error" $\left\|u-u_{N}\right\|$

Linear System / Objective Function

Calculate "best" w_{i}

Discretisation Error

The Difference Resolution Makes
From the first Intergovernmental Panel on Climate Change (IPCC) report in 1990 to the fourth assessment in 2007, the resolution of climate modeling improved significantly, allowing scientists to get a more detailed picture of climate changes.

This is what PN is for!

(But there is a huge gap)
2. Generalising GP Regression

Recap: GP Regression

- We suppose we have a GP Prior:

$$
u \sim \mathscr{G} \mathscr{P}(m, k)
$$

- Condition on observations $u\left(x_{i}\right)=u_{i}$. Let $\mathscr{D}:=\left\{\left(x_{i}, u_{i}\right)\right\}_{i=1}^{n}$:

$$
\begin{aligned}
u \mid \mathscr{D} & \sim \mathscr{G} \mathscr{P}(\bar{m}, \bar{k}) \\
\bar{m}(x) & =m(x)+k(x, X) K(X, X)^{-1}(\mathbf{u}-m(X)) \\
\bar{k}\left(x, x^{\prime}\right) & =k\left(x, x^{\prime}\right)-k(x, X) K(X, X)^{-1} k\left(X, x^{\prime}\right)
\end{aligned}
$$

Under the Hood

- We can construct the conditional distribution because of joint Gaussianity:

$$
\left[\begin{array}{l}
u(X) \\
u\left(X^{\prime}\right)
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
m(X) \\
m\left(X^{\prime}\right)
\end{array}\right],\left(\begin{array}{ll}
k(X, X) & k\left(X, X^{\prime}\right) \\
k\left(X^{\prime}, X\right) & k\left(X^{\prime}, X^{\prime}\right)
\end{array}\right)\right)
$$

- This is multivariate Gaussian, so we can use the multivariate Gaussian conditioning formula:

$$
\left[\begin{array}{c}
U \\
Y
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c}
m_{U} \\
m_{Y}
\end{array}\right],\left(\begin{array}{cc}
\Sigma_{U U} & \Sigma_{U Y} \\
\Sigma_{U Y}^{\top} & \Sigma_{Y Y}
\end{array}\right)\right) \Longrightarrow \begin{aligned}
U & =y \sim \mathcal{N}(\bar{m}, \bar{\Sigma}) \\
\bar{m} & =m_{U}+\Sigma_{U Y} \Sigma_{Y Y}^{-1}\left(y-\mu_{Y}\right) \\
\bar{\Sigma} & =\Sigma_{U U}-\Sigma_{U Y} \Sigma_{Y Y}^{-1} \Sigma_{U Y}^{\top}
\end{aligned}
$$

Key Observation:
 We can do this anywhere we get joint Gaussianity.

Generalising Observations

- Encapsulate information provided in an "information operator" $\mathscr{A}: \mathscr{U} \rightarrow \mathbb{R}^{n}$
- If \mathscr{A} is a (suitable*) linear operator we have:

$$
\left[\begin{array}{c}
u(X) \\
\mathscr{A} u
\end{array}\right] \sim \mathscr{N}\left(\left[\begin{array}{c}
m(X) \\
\mathscr{A} m
\end{array}\right],\left(\begin{array}{cc}
k(X, X) & k(X, \cdot) \mathscr{A}^{\dagger} \\
\mathscr{A} k(\cdot, X) & \mathscr{A} k \mathscr{A}^{\dagger}
\end{array}\right)\right)
$$

* Matsumoto, T., \& Sullivan, T. J. (2023). Images of Gaussian and other stochastic processes under closed, denselydefined, unbounded linear operators (Version 5). arXiv. https://doi.org/10.48550/ARXIV.2305.03594

The Adjoint in the Room

- The previous slide had terms like $k(X, \cdot) \mathscr{A}^{\dagger}$ and $\mathscr{A} k \mathscr{A}^{\dagger}$
- Technically \mathscr{A}^{\dagger} is the adjoint of \mathscr{A}.
- We don't need to worry about that - it just "operates on the second argument".
- E.g....
- Considering $k\left(x, x^{\prime}\right)$...
. $\mathscr{A} u=\frac{d u}{d x}(0.5) \Longrightarrow k(X, \cdot) \mathscr{A}^{\dagger}=\frac{d k}{d x^{\prime}}(X, 0.5)$

Linking to GP Regression

- E.g. in GP regression:

$$
\mathscr{A} u=\left[\begin{array}{c}
\delta_{x_{1}} u \\
\vdots \\
\delta_{x_{n}} u
\end{array}\right]=\left[\begin{array}{c}
u\left(x_{1}\right) \\
\vdots \\
u\left(x_{n}\right)
\end{array}\right]
$$

- As a result, $\mathscr{A} k \mathscr{A}^{\dagger}=k(X, X)$ as expected.

General Conditional Distribution

$$
\begin{aligned}
u(X) \mid \mathscr{A} u & =y \sim \mathscr{N}(\bar{m}(X), \bar{k}(X, X)) \\
\bar{m}(x) & =m(x)+k(x, \cdot) \mathscr{A}^{\dagger}\left[\mathscr{A} k \mathscr{A}^{\dagger}\right]^{-1}(y-\mathscr{A} m) \\
\bar{k}\left(x, x^{\prime}\right) & =k\left(x, x^{\prime}\right)+k(x, \cdot) \mathscr{A}^{\dagger}\left[\mathscr{A} k \mathscr{A}^{\dagger}\right]^{-1} \mathscr{A} k\left(\cdot, x^{\prime}\right)
\end{aligned}
$$

illustration: Conditioning on Derivatives

3: Probabilistic PDE Solvers

We just need to adapt \mathscr{A} to the problem at hand.

Let's Solve a PDE

- Consider the canonical linear elliptic PDE with Dirichlet Boundary Conditions:

Let's Solve a PDE

- Consider the canonical linear elliptic PDE with Dirichlet Boundary Conditions:

$$
\begin{aligned}
& \mathscr{L}_{1} u=f \\
& \mathscr{L}_{2} u=b
\end{aligned}\binom{\mathscr{L} \notin u \neq-\nabla \cdot(\kappa(x) \nabla u(x))}{\mathscr{L}_{2} \mathscr{G}^{\prime} \partial \underline{D}_{u} u}
$$

Let's Solve a PDE

A Natural Information Operator

Information Operator

$$
\begin{array}{ll}
\mathscr{L}_{1} u=f & x \in D \\
\mathscr{L}_{2} u=b & x \in \partial D
\end{array}
$$

$$
\mathscr{A}:=\left[\begin{array}{c}
\delta_{x_{1} 1} \circ \mathscr{L}_{1} \\
\vdots \\
\delta_{x_{X_{1}}} \circ \mathscr{L}_{1} \\
\delta_{x_{1}} \circ \mathscr{L}_{2} \\
\vdots \\
\delta_{x_{X_{2}}} \circ \mathscr{L}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathscr{A}_{1} \\
\\
\mathscr{A}_{2}
\end{array}\right]
$$

$$
\begin{aligned}
& u(X) \mid \mathscr{A} u=y \sim \mathscr{N}(\bar{m}(X), \bar{k}(X, X)) \\
& \bar{m}(x)=m(x)+k(x, \cdot) \mathscr{A}^{\dagger}\left[\mathscr{A} k \mathscr{A}^{\dagger}\right]^{-1}(y-\mathscr{A} m) \\
& \bar{k}\left(x, x^{\prime}\right)=k\left(x, x^{\prime}\right)+k(x, \cdot) \mathscr{A}^{\dagger}\left[\mathscr{A} k \mathscr{A}^{\dagger}\right]^{-1} \mathscr{A} k\left(\cdot, x^{\prime}\right) \\
& {\left[\begin{array}{c}
u(X) \\
\mathscr{A} u
\end{array}\right] } \sim \mathcal{N}\left(\left[\begin{array}{c}
m(X) \\
\mathscr{A} m
\end{array}\right],\left(\begin{array}{cc}
k(X, X) & k(X, \cdot) \mathscr{A}^{\dagger} \\
\mathscr{A} k(\cdot, X) & \mathscr{A} k \mathscr{A}^{\dagger}
\end{array}\right)\right) \\
& {\left[\begin{array}{c}
u(X) \\
\mathscr{A}_{1} u \\
\mathscr{A}_{2} u
\end{array}\right] \sim \mathscr{N}\left(\left[\begin{array}{c}
m(X) \\
\mathscr{A}_{1} m \\
\mathscr{A}_{2} m
\end{array}\right],\left(\begin{array}{ccc}
k(X, X) & k(X, \cdot) \mathscr{A}_{1}^{\dagger} & k(X, \cdot) \mathscr{A}_{2}^{\dagger} \\
\mathscr{A}_{1} k(\cdot, X) & \mathscr{A}_{1} k \mathscr{A}_{1}^{\dagger} & \mathscr{A}_{1} k \mathscr{A}_{2}^{\dagger} \\
\mathscr{A}_{2} k(\cdot, X) & \mathscr{A}_{1} k \mathscr{A}_{2}^{\dagger} & \mathscr{A}_{2} k \mathscr{A}_{2}^{\dagger}
\end{array}\right)\right.}
\end{aligned}
$$

Probabilistic PDE Solver

- We then have the following:

$$
\begin{aligned}
u(X) \mid \mathscr{A} u=\mathbf{y} & \sim \mathscr{N}(\bar{m}(X), \bar{k}(X, X)) \\
\bar{m}(X) & =m(X)+k(X, \cdot) \mathscr{A}^{\dagger}\left[\mathscr{A} k \mathscr{A}^{\dagger}\right]^{-1}(\mathbf{y}-\mathscr{A} m) \\
\bar{k}(X, X) & =k(X, X)-k(X, \cdot) \mathscr{A}^{\dagger}\left[\mathscr{A} k \mathscr{A}^{\dagger}\right]^{-1} \mathscr{A} k(\cdot, X)
\end{aligned}
$$

- The above is our probabilistic PDE solver...!

Illustration: Probabilistic PDE Solver

- See also https://github.com/marvinpfoertner/linpde-gp.

4: A Tiny Bit of Theory

What about UQ?

Suppose that (in addition to some technical assumptions):

- $u \in \mathbb{H}^{\beta}(D)$ for some $\beta>d / 2$
- The RKHS $H_{k}(D)$ is equivalent to $\mathbb{T}^{\beta}(D)$

Then we have the error bound:

$$
|u(x)-\bar{m}(x)| \leq \bar{k}(x, x)^{\frac{1}{2}}\|u-m\|_{H_{k}(D)}
$$

Fill Distance

What About Convergence?

Consider the fill distance

$$
h=\sup _{x \in D} \min _{x^{\prime} \in \mathscr{D}}\left\|x-x^{\prime}\right\|_{2}
$$

Let $\rho<\beta-d / 2$ denote the differential order of the PDE. Then it holds that

$$
\bar{k}(x, x)^{\frac{1}{2}} \leq C h^{\beta-\rho-d / 2}
$$

Generalising

- We focussed on point evaluation. Things can be made (much) more general.
- The first result holds much more generally.
- Fill-distance-based bounds are much trickier to derive for non-point-evaluation based \mathscr{A}.

5: Inverse Problems

Bayesian Inverse Problems

- Suppose we have data:

$$
y=\mathscr{G}(\theta)+\zeta
$$

- Calculate / approximate the posterior distribution:

$$
p(\theta \mid y)=\frac{p(y \mid \mathscr{G}(\theta)) p(\theta)}{p(y)}
$$

High accuracy (slow) solution

High error (fast) solution

PN Solvers Robust to approximation error

Hydrocyclones

Electrical Impedance Tomography

"Data-generating model"

$$
y=\mathscr{G}\left(\theta^{\dagger}\right)+\zeta
$$

A (more complex) linear elliptic PDE

Putting PNM into Inference Problems

$$
\begin{gathered}
p\left(y \mid \theta, u_{\theta}^{\dagger}\right) \\
p_{\mathrm{PN}}(y \mid \theta)=\int p(y \mid \theta, u) p(u \mid \mathscr{D}, \theta) \mathrm{d} u
\end{gathered}
$$

"Inflate" likelihood by error in PNM.
In some cases can be done explicitly.

Bayesian Probabilistic Numerical Methods in Time-Dependent State Estimation for Industrial Hydrocyclone Equipment Oates, Cockayne, Aykroyd \& Girolami, Journal of the American Statistical Association (2019)

Conclusions

A Blueprint for Bayesian PNM?

- "We just need to specify \mathscr{A}."
- For nonlinear \mathscr{A} this is (ridiculously) harder...!

Thanks!

