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Motivation



Bayesian Probabilistic Numerical Methods: Conjugate Setting

▶ State of the universe: u = (u(t))t∈T , u ∈ U
▶ Information: A : U → Rn, some n ∈ {1, 2, . . . }
▶ Quantity of interest: Q : U → Rm, some m ∈ {1, 2, . . . } ∪ {∞}

e.g. for numerical integration we might have

Q(u) =

∫ 1

0
u(t) dt, A(u) = [u(0), u(x), u(2x), . . . , u(1)] .

Linear information enables us to use a conjugate Gaussian framework:

1. Select a Gaussian process (U(t))t∈T to represent epistemic uncertainty in
(u(t))t∈T .

2. Compute the conditional

U|(A = a) ∼ GP(mU|a, kU|a)

mU|a(t) = At′k(t, t
′)[AtAt′k(t, t

′)]−1a

kU|a(t, t
′) = k(t, t′)− At′k(t, t

′)[AtAt′k(t, t
′)]−1Atk(t, t

′)

3. Push the remaining uncertainty through Q.
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What About Nonlinear Information?

Using the same notation, consider instead

Mu = b, u = (u1, . . . , ud )
⊤ ∈ Rd .

The matrix-vector products computed in the popular conjugate gradient method are

⟨s(1), b⟩, s(1) = b

⟨s(2), b⟩, s(2) = cubic in b

⟨s(3), b⟩, s(3) = ninth powers of b

...
...

So it seems natural to let

A(u) =


⟨s(1),Mu⟩
⟨s(2),Mu⟩

...


... but this is nonlinear information!

This problem is not easily fixed.
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Aim of the Talk

Aim: A black box that enables state-of-the-art numerical algorithms to be
immediately exploited in the context of probabilistic numerics (PN).

Key Idea: Predict the limit of a sequence of increasingly accurate approximations
produced by a traditional numerical method.

Bonus: A statistical perspective on extrapolation methods.

GPs: For concreteness, we will predict using GPs, but other predictive models could
be used.

Compared to standard PN:

(✓) applicable to nonlinear information

(✓) state-of-the-art performance and functionality (in principle, at least)

(✓) provably higher order of convergence relative to a single application of the
numerical method

(✗) multiple realisations of a numerical method are required

(✗) a joint statistical model has to be built for not just the quantity of interest but
also for the error associated with the output of a traditional numerical method.
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Extrapolation Methods



Extrapolation methods
An extrapolation method is an estimate for the limit

lim
x→0

f (x)

which can be based on values {f (x1), . . . , f (xn)} with {x1, . . . , xn} ⊂ (0,∞)d such
that the associated computational cost falls within a notional budget.

Applications:

▶ finite difference approximation to derivatives

▶ numerical integration

▶ numerical solution of differential equations

▶ modern computer codes

Solutions:

▶ Richardson [1911] (higher-order convergence guaranteed)

▶ other extrapolation methods (NA-informed, typically univariate quantity of
interest)

▶ multi-fidelity modelling (flexible, data-driven, multivariate quantity of interest)
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▶ other extrapolation methods (NA-informed, typically univariate quantity of
interest)

▶ multi-fidelity modelling (flexible, data-driven, multivariate quantity of interest)



Figure: Lewis Fry Richardson
(1881 - 1953; born in
Newcastle upon Tyne)

Example: Higher-order convergence with
Richardson extrapolation

Suppose that

f (x)︸︷︷︸
numerical method

= f (0)︸︷︷︸
quantity of interest

+ f ′(0)x + O(x2)︸ ︷︷ ︸
error of the numerical method

so that f (x) is a first-order approximation to f (0).

Then

2f (x)− f (2x)

= 2[f (0) + f ′(0)x + O(x2)]

− [f (0) + f ′(0)(2x) + O(x2)]

= f (0) + O(x2)

is a second-order approximation to f (0).

In general

f (s) cts =⇒ combine s evaluations of f to get
order-s approximation to f (0) .
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Figure: Christiaan Huygens
(1629 -1695; born in the
Hague)

Example: Higher-order convergence with
Richardson extrapolation
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Problems:

▶ extrapolation methods do not
provide probabilistic UQ

▶ multi-fidelity modelling is not
NA-informed and lacks
higher-order convergence
guarantees

▶ neither method enables
experimental design for
{x1, . . . , xn}.

Seek a extrapolation method that:

▶ provides probabilistic UQ

▶ is NA-informed

▶ applicable to scenarios where
multi-fidelity modelling used.
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Black Box Probabilistic Numerics



Given an explicit error bound b such that f (x) = f (0) + O(b(x)) and b(0) = 0.

How to encode this knowledge into a probabilistic regression model?

Gauss–Richardson Extrapolation (GRE)
Samples g ∼ GP(0, k) from a Gaussian process with covariance kernel

k(x, x′) = σ2
{
k2
0 + b(x)b(x′)ke(x, x

′)
}
, x, x′ ∈ (0,∞)d ,

a.s. satisfy g(x)− g(0) = O(b(x)) as well.

So we use this GP regression model, trained on [f (Xn)]i = f (xi ), to predict f (0).

=⇒ Only need to work with linear information!

Since k2
0 is proportional to the prior variance for f (0), we seek to let k2

0 → ∞,
representing the flat prior limit / universal kriging:

f (0)|f (Xn) ∼ N (mn[f ], vn[f ]), mn[f ] =
1⊤K−1

b f (Xn)

1⊤K−1
b 1

, vn[f ] =
σ2
n[f ]

1⊤K−1
b 1

,

where [Kb]i,j = kb(xi , xj ) = b(xi )b(xj )ke(xi , xj ) and σ2
n[f ] is a scale estimator, to be

specified.
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Illustration: Eigenvalue Problems

▶ Let A ∈ Rm×m.

▶ An eigenvalue λ ∈ R satisfies Av = λv for some v ∈ Rm.

▶ All such matrices have n (possibly complex or repeated) eigenvalues, say
{λ1, . . . , λm}.

▶ Eigenvalues are important in many applications, e.g.
▶ stability analysis of dynamical systems,
▶ web search engines,
▶ principal component analysis, . . .

▶ The basic idea of the QR Algorithm is to set A0 = A and iterate

An−1 = Qn−1Rn−1, An = Rn−1Qn−1.

where Qn−1 is orthogonal and Rn−1 is upper-triangular. The diagonal of Ak

converges to the set of eigenvalues {λ1, . . . , λm}.
▶ To see why this works some calculation is needed.

▶ Also lots of details that are practically important.

Nonlinear information =⇒ difficult to envisage as a probabilistic numerical method.
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Illustration: Eigenvalue Problems

Example: Sparse matrices that arise as the discrete Laplace operator in the solution of
the Poisson equation by a finite difference method with a five-point stencil

A =


B −I
−I B −I

. . .
. . . −I
−I B

 , B =


4 −1
−1 4 −1

. . .
. . . −1
−1 4

 ,

where B is an l × l matrix and A is an ml ×ml matrix, and we aim to recover the
largest few eigenvalues of the matrices considered.

For GRE we took:

▶ xn = 1/n, where n is the number of iterations performed.

▶ entries of An are modelled as a priori independent; f (xn) = [An]i,i (but this might
be näıve).

▶ the order s of convergence depends on {λ1, . . . , λm}, so is presumed unknown
and estimated.
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be näıve).

▶ the order s of convergence depends on {λ1, . . . , λm}, so is presumed unknown
and estimated.



Illustration: Eigenvalue Problems

Example: Sparse matrices that arise as the discrete Laplace operator in the solution of
the Poisson equation by a finite difference method with a five-point stencil

A =


B −I
−I B −I

. . .
. . . −I
−I B

 , B =


4 −1
−1 4 −1

. . .
. . . −1
−1 4

 ,

where B is an l × l matrix and A is an ml ×ml matrix, and we aim to recover the
largest few eigenvalues of the matrices considered.

For GRE we took:

▶ xn = 1/n, where n is the number of iterations performed.

▶ entries of An are modelled as a priori independent; f (xn) = [An]i,i (but this might
be näıve).
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Figure: QR algorithm. All plots show red shaded ±2σ credible intervals, numerical data as black
circles, and true eigenvalues as blue stars. A total of n = 5 (left) and 15 (centre) iterations were
used.

(✓) No additional computational cost to GRE, since the sequence (f (xi ))
n
i=1 is

generated during a single run of the iterative numerical method.

(✓) Overhead due to fitting the Gaussian process (GP) is negligible in this experiment.
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Importance of a Non-Stationary GP: Recall that s is inferred in these simulations -
the estimated values were, respectively, 1.0186 and 1.0167.

Contrast with a stationary GP model (i.e. s = 0):

Figure: Comparison of non-stationary (left) and stationary (right) covariance kernels.



Theory of Gauss–Richardson Extrapolation



Set-up for theoretical analysis of GRE

Recall f (x) = f (0) + O(b(x)) for some x ∈ [0, 1]d .

Design points Xn = {x1, x2, . . . , xn} ⊂ [0, 1]d .
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Set-up for theoretical analysis of GRE

Recall f (x) = f (0) + O(b(x)) for some x ∈ [0, 1]d .

Error of the highest-fidelity experiment is f (x)− f (0) = O(b(x))
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Set-up for theoretical analysis of GRE

Recall f (x) = f (0) + O(b(x)) for some x ∈ [0, 1]d .

Box fill distance ρXn = size of the biggest cube not containing an element of Xn.

x2

x1

ρXn

1

1



Set-up for theoretical analysis of GRE

Recall f (x) = f (0) + O(b(x)) for some x ∈ [0, 1]d .

Scaled design points X h
n = {hx : x ∈ Xn} where h ∈ (0, 1].
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Theorem (Higher-order convergence with GRE)
Assume that b ∈ poly(r) and ke ∈ C2s .

Let mh
n[f ] be the GRE estimator based on f (X h

n ).

Then there is an explicit constant Cs such that

|f (0)−mh
n[f ]|︸ ︷︷ ︸

extrapolation error

≤ Cs ρsXn
|f |Hk (X ) hs︸︷︷︸

acceleration

∥b∥L∞([0,h]d )︸ ︷︷ ︸
original bound

whenever the box fill distance ρXn is “small enough”.

Remarks:

▶ Proof via local polynomial reproduction, a la Wendland [2004].

▶ Applies to s-smooth f , meaning that

|f |Hk (X ) =
∥∥∥x 7→ e(x) := f (x)−f (0)

b(x)

∥∥∥
Hke (X )

< ∞.

▶ Extrapolation with convergence rate error O(hs+r ).

▶ Analogous result with exponential rates when f is smooth enough.
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where γd := 2d(1 + γd−1) with base case γ1 := 2.

▶ Question: We lose the “one order per datum” of Richardson - is something lost in
the proof?
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Illustration: Finite difference
method

For g : R → R be s + 1 times
continuously differentiable in an
open neighbourhood of t ∈ R, and
consider the central difference
method

f(x) =
g(t + x)− g(t − x)

2x

for approximation of g ′(t).

Central differences are
second-order accurate, so we take
b(x) = x2.

X h
n = {0.2h, 0.4h, 0.6h, 0.8h, h}.
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Figure: Finite difference approximation; g ∈ C 3 (s = 2).



Uncertainty quantification

For the maximum quasi likelihood
estimator

σ2
n[f ] =

1

n

[
f (Xn)

⊤K−1
b f (Xn)

−
(1⊤K−1

b f (Xn))2

1⊤K−1
b 1

]
we can show that

lim sup
h→0

|f (0)−mh
n[f ]|√

vh
n [f ]

< ∞

which is nice, but we seem to be a
bit asymptotically over-confident
when using the “right” kernel
(s = 2).
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Optimal experimental design

The variance returned from GRE is

vn[f] =
σ2
n[f]

1⊤K−1
b 1

An a priori optimal experimental
design is

argmax
X

1⊤K−1
b 1 s.t.

∑
x∈X

c(x) ≤ C ,

where Kb = [kb(x , x ′)]x,x′∈X .

Let’s vary the computational
budget C and look at optimal
designs:
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Figure: Optimal experimental design; b(x) = x ,

c(x) = x−1



Case Study: Cardiac Modelling



Cardiac Model

Here f (x) is a numerical simulation of a single heart beat with both a spatial (x1) and
a temporal (x2) discretisation level [Strocchi et al., 2023].

Mesh Resolution
1.7 mm 1.4 mm 1.0 mm

0.7 mm 0.6 mm 0.4 mm

Figure: Cardiac model: A subset of the mesh resolutions used in this case study. The finest
resolution required 3 × 107 finite elements to be used.



The computational cost c(x) is measured
in real computational time (seconds) and
comprises

▶ setup time

▶ assembly time (the time taken to
assemble linear systems of equations)

▶ solver time (the time taken to solve
linear systems of equations)

with assembly time the main contributor to
total computational cost.

To achieve a clinically-acceptable level of
accuracy, it is typical for a simulation to be
performed with xdefault ≈ (0.4 mm, 2 ms),
at a cost c(xdefault) ≈ 1.5× 104 seconds
(around ≈ 4 hours on 512 cores of
ARCHER) for a single heart beat.

Here is our workflow:
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Scalar quantities of interest

For assessment purposes we aim to predict
f (xhi-fi) as a ground truth, but in practice
the goal is to predict f (0).

For each of 7 scalar quantities of interest
associated with the cardiac model we
display the relative error of GRE

|f (xhi-fi)−mn[f ](xhi-fi)|
|f (xhi-fi)− f (xdefault)|

with respect to the default approximation,
as a function of the total computational
budget C .
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Temporal quantities of interest

Extension of GRE to multi-output Gaussian process models allows temporal quantities
of interest to be accurately extrapolated:
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Summary

▶ Black box probabilistic numerics leverages existing numerical methods in an
extrapolation framework.

▶ Avoids the tricky issue of nonlinear information, by formulating a linear problem
instead.

▶ Complementary to standard PN.

Full details in the report

Probabilistic Richardson Extrapolation, arXiv:2401.07562

where we discuss how Gauss–Richardson is capable also of

▶ estimation of uncertain convergence rates b(x)

▶ simultaneous extrapolation and emulation for parametric models fθ(x)

▶ extrapolation of multivariate quantities f (x, t)

Credit to: Onur Teymur, Chris Foley, Philip Breen, Toni Karvonen, Aretha
Teckentrup, Marina Strocchi, Steve Niederer.

Thanks for listening!
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