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Digital Twins: Not Just Hype

• Digital twins are a powerful step forward, following the computational modelling

revolution of the 20th century.

• They allow for us to combine powerful mechanistic descriptions of reality with

data, with massive impact across engineering and healthcare (among other fields).

• A lot of attention has been focussed on digital twins in the last decade, but there

still remains ambiguity as to what they are.

• So what is a digital twin?
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Digital Twins

• A digital twin is virtual duplicate of a real

system, coupling a mathematical model to

observations.

• Simple paradigm common in science and

engineering, which is highly versatile and

universal.

• However, building a DT in practice is complex

and challenging.

• Require knowledge of mechanistic models

underlying the system, and the relations of

these to data.
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Digital Twins: Key Components

1. Time evolving; ideally over the complete lifecycle of the asset, from design

through to end of life.

2. Continued connectivity; data, and information passed between the physical and

digital twin continuously.

3. Versatility; enables highly context dependent digital twins: Entirely bespoke to

each individual asset considered.

4. Universality; can be applied to all fields of human activity.

5. New functionalities; prediction; learning; management; autonomy.

6. Reduces uncertainty; can quantify the uncertainties present using the digital twin

so decisions can more readily be supported.
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Digital Twins: Application Areas

Health Environment Infrastructure

Digital Twins are driving innovation across health, environment, and infrastructure (see, e.g.,

the Turing Research and Innovation Cluster in Digital Twins).
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Digital Twins: Health Examples
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Digital Twins: Environment Examples in EU
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Digital Twins: Infrastructure Examples in UK
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Finite Element Simulation: The

Workhorse of DTs
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Hawk Aircraft Digital Twin Structure

In the Digital Twin of the Hawk aircraft, a core component of the model is Finite Element

Simulation.
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Finite Element Methods

• Underneath FEM simulations are partial differential equations which describe the

physical processes which are occuring within the domain of interest.

• These transcribe physical laws into mathematical objects which we can use and

realise analytically, or, computationally.

• For example, conservation of momentum and conservation of mass of fluids gives

us the famous Navier-Stokes equations.

• Often numerical methods are the only recourse to interacting with these systems;

the most popular being the Finite Element Method.
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Finite Element Methods

To illustrate FEM, consider the

Poisson equation:

−∇ · (a(x ,Λ)∇u) = f (x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω.

Note: Ω can be an arbitrary shape, but

for a 2D square, the setup looks like:

12 / 80



FEM: Function Space Setup

• Now we want to look for solutions u ∈ H1
0 (Ω), and we assume a ∈ L∞(Ω) and

f ∈ L2(Ω). To do so we introduce the weak form.

• Weak form of PDE enables “weak solutions” which lower differentiability

requirements and ease solving.

• Letting v ∈ V(Ω) :=
{
v ∈ H1(Ω) : v = 0 on ∂Ω

}
, we multiply and integrate to

give the weak form:∫
Ω
(a(x ,Λ)∇u) · ∇v dx =

∫
Ω
f · v dx , ∀v ∈ V(Ω).

Which we can write as the shorthand bilinear form AΛ(u, v) = ⟨f , v⟩.
• This is the beginning of our discretization of the PDE.
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FEM: Discretization from the Weak Form

Introduce degree-r polynomial basis functions {ϕi (x)}Mi=1, parameterized by a mesh

refinement parameter h. Subsequently, Vh(Ω) := span{ϕi (x)}Mi=1; the space we “look”

for solutions in.

Noting that Vh(Ω) ⊂ V(Ω), then the variational problem becomes finite-dimensional,

uh =
∑M

i=1 uh,iϕi (x), and so

AΛ(uh, ϕj) = ⟨f , ϕj⟩, ∀j = 1, . . . ,M.

Theorem (FEM convergence)

Let ∥·∥s be the Sobolev norm of degree s. Under technical assumptions for degree-1

polynomial bases {ϕi}Mi=1 (i.e. piecewise continuous)

∥u − uh∥L2(Ω) ≤ Ch2∥f ∥L2(Ω).
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FEM: Solving

The finite-dimensional weak form defines a linear system to solve:

Au = b,

Aji = AΛ(ϕi , ϕj), ui = uh,i , bi = ⟨f , ϕi ⟩.

• Deterministic system of equations to solve for the solution vector u = A−1b.

• Powerful framework to turn PDE descriptions of physical systems to linear — or

nonlinear — deterministic systems of equations.

• Advanced numerical linear algebra to solve these systems: for example, Krylov

methods, multigrid methods/preconditioners.
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FEM: Classical Simulation Examples

FEM is widely used across all engineering, physics, and biomechanics.1

1
Figures from https://link.springer.com/article/10.1007/s00784-018-2671-z, https://www.mdpi.com/2073-8994/13/2/254/htm,

https://www.twscon.com/en/fem_analysis.html
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Requirement for Statistical Construction of FEM

• However we know that models are often idealized representations of reality. There

is inherent uncertainty due to possible misspecification.

• Roughly, our models should be of the form (see, e.g., Kennedy and O’Hagan)

u ≈ A−1b+ ξ,

where ξ describes structural, stochastic, model error.

• This allows for uncertainty quantification, through the admission of possibly
misspecified model parameters, enabling:

1. The assimilation of data;

2. The solving of the inverse problem;

3. The combination of deep learning approaches with physical systems.

How do we construct such statistical descriptions of FEM? We will now go through

one such approach.
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The Statistical Finite Element

Method (statFEM) Construction
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statFEM Prior Measure

Consider a stochastically forced elliptic PDE,

Lu = −∇ · (a(x ,Λ)∇u(x)) = ξ, x ∈ Ω

u = 0, x ∈ ∂Ω,

where ξ ∼ GP(f , kθ(x , x
′)), and Ω ⊂ Rd is open and bounded.

We shall assume that a has no unknown parameters and is thus fully deterministic, so

a(x ,Λ) := a(x). It is also assumed a(·) ∈ C (Ω)∩C 1(Ω) and a(x) > a0 > 0 for x ∈ Ω.

Because L is linear and deterministic, we have, formally that

u ∼ GP(L−1f , kL,θ),

where

kL,θ(x , y) = (−L)−1
x (−L)−1

y kθ(x , y).

Gaussian process ξ induces hierarchical prior distribution on the space of fields u.
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statFEM Prior Measure

From the Gaussian process we can look at the associated Gaussian measure on L2(Ω).

Via the weak interpretation of elliptic example we have L−1 : L2(D) → L2(D), and thus

u ∼ µ0 = N (L−1f ,L−1CθL−∗),

where Cθ is the covariance operator with kernel kθ(·, ·).
In the function-space setting Gaussian measure provides an appropriate prior measure

µ0, which can be updated to give the posterior measure µy .

Next suppose that data, y ∈ Rny , is observed via y = Hu + η, where H is the

continuous observation operator, and η ∼ N (0, σ2I). From this we can define

dµy

dµ0
(u) ∝ exp (−Φ(u; y)) , Φ(u; y) =

1

2σ2
∥y −Hu∥22.
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statFEM Posterior Measure

The Radon-Nikodym derivative

dµy

dµ0
(u) ∝ exp (−Φ(u; y)) , Φ(u; y) =

1

2σ2
∥y −Hu∥22.

defines the posterior Gaussian measure µy , on the L2(Ω) function space.

This posterior is absolutely continuous with respect to the prior, µ0 ≪ µ, inheriting

“information” from the prior distribution. The prior defines the starting point for

inference and should be well-specified!

Using statFEM, data can update our prior beliefs in the model solution.

Now, when discretised, can we be sure that this prior is converging to something

sensible?
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Analysis: Set-Up

Given a triangulated mesh Ωh with mesh-size h > 0 we can introduce a finite element

approximation with M degrees of freedom.

This leads to approximate prior:

uh(x) ∼ GP(Φh(x)A
−1b,Φh(x)CuΦh(y)

∗),

where Φh : Ω → RM is the basis-to-coordinate map. This is an intrinsically finite

dimensional distribution as

uh(·) ∼ Φh(·)N (A−1b,Cu),

where A is the stiffness matrix and Cu is the induced covariance by the FEM basis.
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Analysis of the prior

The random fields u and uh are two Gaussian processes on the same compact domain

Ω.

We expect that uh → u as h → 0 in an appropriate sense. Can we quantify the

discretisation error?

For risk-assessment applications, it is important that we can control the error over all

aspects of the distributions, i.e. we should be able to control the error in:

• mean

• covariance

• quantiles

• extrema (spatial maximum, spatial minimum distributions)

• other appropriate quantities of interest.
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Analysis strategy

What is the appropriate metric/distance in which to assess the discrepancy between

fields u and uh which captures all of the above?

Challenge: We have no guarantees that the measures uh and u are not mutually

singular on the Hilbert space on which they are both supported.

This precludes analysis based on KL, Fisher, Hellinger or related distances/divergences.

Proposed Approach: Analyse error in p-Wasserstein distance, for p ≥ 2.
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Main Results

To upper-bound the Wasserstein distance, we exploit a connection between the

Wasserstein distance between Gaussian measures and the Procrustes Metric on the

respective covariance operators (Masarotto, Panaretos, and Zemel)2.

Theorem (Vastly simplified main result)

Suppose that f ∈ L2(Ω) where Ω is open and bounded with Lipshitz boundary and

the covariance operator kθ satisfies some technical conditions. Then for given a

regular triangulation Ωh of Ω with mesh size h sufficiently small, there exists γ > 0

independent of h such that:

W2(D[u],D[uh]) ≤ γh2,

where D[u] is the measure associated with the Gaussian random field u.

2Yanni Papandreou et al. “Theoretical Guarantees for the Statistical Finite Element
Method”. SIAM/ASA Journal on Uncertainty Quantification (Dec. 2023): 1278–1307.
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Main Results

This bound is consistent with L2(Ω) a-priori error estimates for deterministic finite

element approximations obtained via Aubin-Nitche. In particular, as the variance of the

noisy forcing goes to zero, we have that

D[u] → δL−1f , and D[uh] → δL−1
h fh

,

and

W2(δL−1f , δL−1
h fh

) = ∥L−1f − L−1
h fh∥L2(Ω) = O(h2)

26 / 80



Realizing statFEM
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statFEM: Resultant Discretization

Of course, to work with these measures they must be realized in practice. We can

write our discretized (stochastic) weak form as

AΛ(uh, ϕj) = ⟨ξ, ϕj⟩, ∀j = 1, . . . ,M.

Which gives the Gaussian law

(u | Λ, θ) ∼ N (A−1b,A−1GθA
−⊤),

where bj = ⟨f , ϕj⟩, Ajk = AΛ(ϕj , ϕk), Gθ,jk = ⟨ϕj , ⟨kθ(·, ·)ϕk⟩⟩.
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Combining with data

• Now suppose that we have observed some data y ∈ RN . Observed on a grid

X = (xobs1 , . . . , xobsN ), with some measurement error.

• Measurement process could be described if full knowledge of true process

available.

• Data is a linear combination of the measurement error and the response of the

true unknown generating process.

• Define H : RM → RN , the discrete observation operator which maps from the

domain of the FEM solution: Hu = (uh(x
obs
1 ), . . . , uh(x

obs
N )).

29 / 80



Combining with data

To deal with possible model misspecification we posit the following data generating

process (DGP): y = ρHu+ d+ ε,

• y ∈ RN : observations observed on X ∈ Ω.

• u ∈ RM : statFEM model, p(u | Λ, θ) ∼ N (A−1b,A−1GθA
−⊤).

• H : RM → RN : observation operator.

• d ∼ GP(0,Kd): systematic model bias/discrepancy/mismatch (similar ideas from

Kennedy-O’Hagan type models — models the functional difference between FEM

and observed data).

• ε ∼ N (0, σ2
y I): observation noise, could be known from measurement devices or

able to be inferred using e.g. marginal likelihood.

• Denote any hyperparameters of d, ε as w, and assumed u ⊥ d ⊥ ε.
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Likelihood and posterior

This gives the likelihood (y | u,w) ∼ N (Huh,Kd + σ2I), which can be combined with

the prior p(uh | f,Λ, θ) to give the posterior

p(u | y,w,Λ, θ) ∝ p(y | u,w) · p(uh | Λ, θ).

Statistically coherent combination of prior physical knowledge and observed data,

taking into account model mismatch.

Allows for known information from the physics of the problem to be rigorously

incorporated in the inference procedure.

Marginal likelihood:

p(y |w,Λ, θ) = N (Hmu,HCuH
⊤ +Kd + σ2I).

We optimize the marginal likelihood to learn the mismatch hyperparameters.
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Sampling the statFEM Prior Distribution

Characterise the statFEM measures through sampling methods which avoid computing

matrix square-roots: unadjusted Langevin methods. Let Ψ(u) = 1
2∥Au− b∥2G−1 ,

∇uΨ(u) = A⊤G−1 (Au− b) and3

du = −∇uΨ(u)dt +
√
2 dBt ,

where (Bt)t≥0 is a SBM.

The asymptotic law is (u | Λ, θ), samples {u(k)} generated using the Euler-Maruyama

step:

u(k+1) = u(k) − η∇uΨ(u(k)) +
√

2ηZ(k).

Under Lipschitz gradients this also extends to nonlinear forward models i.e.

Ψ(u) = 1
2∥A (u)− b∥2G−1 .

3Ömer Deniz Akyildiz et al. “Statistical Finite Elements via Langevin Dynamics”.
SIAM/ASA Journal on Uncertainty Quantification (Dec. 2022): 1560–1585.
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Sampling the Prior

Denoting the law of the unadjusted Langevin algorithm as pk(u | Λ, θ), we can provide

guarantees for the convergence to the conditional target measure p(u | Λ, θ):

KL(pk ||p) ≤ O(e−ηmk) +O(η),

for some m > 0 (due to strong convexity) and η is the step-size of the ULA.

The bias can be made arbitrarily small with small η > 0 and k → ∞.
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Sampling the Prior

More precisely, we obtain guarantees for the convergence to the conditional target

measure p(u | Λ, θ):

KL(pk ||p) ≤ e−λmin(A
⊤G−1A)ηkKL(p0, p) + 8ηd

λmax(A⊤G−1A)2

λmin(A⊤G−1A)
,

where λmax(·) and λmin(·) denote the maximum and minimum eigenvalue of a given

matrix, respectively.

The same scheme can be used to sample from the posterior, giving a similar

convergence rate:

KL(pk ||p) ≤ e−λmin(Cy )ηkKL(p0, p) + 8ηd
λmax(C−1

y )2

λmin(C
−1
y )

.

Powerful sampling methodology can be used to generate samples and characterise the

prior and posterior statFEM measures.
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statFEM Numerical Results:

Samplers
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Empirical Results

For our experiments, we consider the Poisson problem

−∇ · (a(x)∇u(x)) = f (x) + ξ(x), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω = [0, 1]× [0, 1] and f (x) ≡ 1. Stochasticity is defined as

ξ ∼ GP(0, β2δ(x − x ′)), β = 0.05,

log a(x) ∼ GP(log(1 + 0.3 sin(π(x0 + x1)), kθ(x , x
′))

where

kθ = 0.12 exp

(
−∥x − x ′∥2

2 · 0.22
)
.

36 / 80



Empirical Results

Upon discretization we have conditional Gaussian

p(u|θ) = N (A−1b,A−1GA−⊤).

We construct G by noting that

G̃ij = β2

∫
Ω
ϕi (x)

∫
δ(x − x ′)ϕj(x

′) dx ′ dx

= β2

∫
Ω
ϕi (x)ϕj(x) dx

′ dx = β2Mij ,

for the mass matrix M. We next make a diagonal approximation such that

Gii =
∑

j G̃ij (lumping).
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Empirical Results

Trace plot. Relative error.

Prior results for state dimension d = 1089, plotting the sampled values of the log-target (a),

and the relative errors on the mean (b). For ULA, the stepsize offers a tradeoff between bias

and rate of convergence.
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Empirical results

Consider the prior of the previous examples, and now suppose that the data are

observed according to a nonlinear observational model:

yi = H(u) + εi , ε ∼ N (0,R).

We take H(·) to be a sigmoid function to mimic sensor “saturation” past a certain

level.

Take nobs observations in total, so the potential for p(u|y, θ) is given by

Ψ(u) =
1

2

nobs∑
i=1

(yi −H(u))⊤R−1(yi −H(u)) +
1

2
(Au− b)⊤G−1(Au− b).

Compare MALA, pMALA, ULA, pULA, and pCN.
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Empirical results

Posterior means (E(u), top), and variance fields (var(u), bottom).

ACF plot.

Nonlinear likelihood: posterior results. The ACF plot is shown for the samples from the FEM

coefficient u(100). All samplers are accurate in the mean, but preconditioning captures the

variance.
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Time-varying, Nonlinear Dynamics
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Time-varying statFEM

Use stochastic dynamics. Take a nonlinear, time-evolving system:

∂tu + Lu +N (u) = ξθ,

we have u := u(x, t), x ∈ Ω, t ∈ [0,T ]. Model uncertainty with a GP (with known θ):

ξθ(x, t) ∼ GP(0, δ(t − t ′) · kθ(x, x′)).

Making a spatial discretisation with FEM, and time-discretisation gives a transition

model over the FEM coefficients un := u(n∆t):

M(un,un−1) = en, en ∼ N (0,∆tG).

Nonlinear dynamics encoded in M(·, ·), implied transition densities p(un | un−1,Λ, θ).
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Time-dependent data synthesis

With data yn ∈ Rny , we write yn = Hun + εn. This gives the state-space model

M(un,un−1) = en, en ∼ N (0,∆tG), (Transition)

yn = Hun + εn, εn ∼ N (0, σ2
nI). (Observation)

Compute the posterior p(un | y1:n,Λ, θ) using nonlinear filtering methods such as the

extended Kalman filter (ExKF)4.

4Connor Duffin et al. “Statistical Finite Elements for Misspecified Models”.
Proceedings of the National Academy of Sciences (Jan. 2021).
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Time-varying statFEM

With the observation model this gives a nonlinear Gaussian state-space model.

Assuming p(un−1|y1:n−1) = N (mn−1,Cn−1) we compute the posterior p(un|y1:n) via
filtering:

1. Prediction: p(un|y1:n−1) =
∫
p(un|un−1, y1:n−1)p(dun−1|y1:n−1).

2. Update: p(un|y1:n) ∝ p(yn|un)p(un|y1:n−1).

This gives the Gaussian p(un|y1:n) = N (mn,Cn) =⇒ describes uncertainty with

solution given all information up to and including current time n∆t . Scaled with

low-rank approaches.
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Conditioning procedure for time-dependent problems

The ExKF is given by, if one assumes that p(un−1 | y1:n−1,θ) ∼ N (mn−1,Cn−1):

1. (Prediction step) Solve for m̂n, MΛ(m̂n,mn−1) = 0, and update the covariance

matrix

Ĉn = J−1
n

(
Jn−1Cn−1J

⊤
n−1

)
J−⊤
n +∆tJ

−1
n GJ−⊤

n ,

J· is the Jacobian of the the nonlinear M(·, ·).
2. (Update step) Set the observed marginal likelihood covariance

Sn = HnĈnH⊤
n + σ2

nI, and compute a standard Kalman update on the mean

mn = m̂n + ĈnH
⊤
n S

−1
n (yn −Hnm̂n).

and the covariance

Cn = Ĉn − ĈnH
⊤
n S

−1
n HnĈn.

Note that this general procedure is exact for linear models - the Jacobians Jn just

become the appropriate linear combiations of FEM matrices (e.g. the mass/stiffness

matrices).
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Aside: scaling to high dimensions

ExKF works for low-dimensional systems but is not scalable! How to scale the

method?

• To compute posterior p(un | y1:n,Λ) we use a low-rank Extended Kalman filter

(LR-ExKF).

• Idea: GP covariance matrices (typically) only need a few dominant modes

(eigenvector/value pairs) to describe the system. Leverage this inside of ExKF.

• LR-ExKF constructs approximate measure p(un | y1:n,Λ) = N (mn,LnL⊤n ),

mn ∈ Rnu , Ln ∈ Rnu×k , k ≪ nu
5.

• Low-rank approximation is optimal in the ℓ2 sense so UQ is sensible (not the case

with, e.g., EnKF).

5Connor Duffin et al. “Low-Rank Statistical Finite Elements for Scalable Model-Data
Synthesis”. Journal of Computational Physics (Aug. 2022).
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Examples
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Staffordshire bridge

• Digital twin of Staffordshire bridge: how to combine sensor data with FEM model,

acknowledging model misspecification and wanting UQ?6.

6Eky Febrianto et al. “Digital Twinning of Self-Sensing Structures Using the
Statistical Finite Element Method”. Data-Centric Engineering (2022): e31.
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Staffordshire bridge

• Use FEM model with subdivision surfaces, to arrive at the usual Gaussian prior:

p(u) = N (A−1b,A−1GA−⊤). In this example there are no unknown parameters

Λ, θ, so uncertainty in the prior only comes in stochastic forcing.

• Posit the same DGP: y = ρHu+ d+ η, assuming as previous d ∼ N (0,Kd), and

η ∼ N (0, σ2
e I).

• Covariance Kd is given from a squared-exponential kernel, with parameters σd ,

and ℓd , so hyperparameters that need to be estimated are w = {ρ, σd , ℓd}.
• Data Y = [y1, y2, . . . , yno ] ∈ Rny×no consists of no = 501 observations at ny = 40

sensors over a two-second observation window t ∈ [1, 3] s, in which a T1-type

train with four carriages passes over the bridge.

• MCMC estimates w, setting them to fixed w∗ = E[w | Y], using prior p(w) ∝ 1.

• QoI: posterior measure p(Hu | y,w∗), at times t = 1 s, t = 2 s, and t = 3 s.
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Staffordshire bridge

Simulated bridge displacements, using the

FEM forward model.

FEM strain results with experimental data,

across all observation times.
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Staffordshire bridge

Hyperparameter w estimates from MCMC, w∗ = E[w] shown as a dashed red line.

Posterior results for the statFEM posterior, shown as the projected measure p(Hu | Y,w∗). 51 / 80



Staffordshire Bridge Example: Takeaways

• Statistically coherent FEM model of Staffordshire railway bridge, with complete

uncertainty quantification, via statFEM

• Acknowledgement of misspecification enables inference, model hyperparameters

calibrated with data.

• Sensible UQ with models calibrated with data.
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Case Study: Nonlinear Internal Waves

h2

h1
u(x, t)

H = 0.3m

L = 6m

WG1 WG2 WG3

• Internal waves flow between layers of density-varying water (mean depths h1, h2),

in a tank of length L and total depth H = h1 + h2.

• KdV equation models the internal wave profile u(x , t) (deviations from rest):

∂tu + αuux + βuxxx + cux + νu = ξ̇.

• Can we synthesise this PDE with measurements y1:n = (y1, . . . , yn) obtained at

wave gauges (labelled above)?
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Case Study: Nonlinear Internal Waves

h2

h1
u(x, t)

H = 0.3m

L = 6m

WG1 WG2 WG3

Apply statFEM to compute posterior p(un | y1:n,Λ) given the observations at each

timestep. Observations yn = (uWG1
n , uWG2

n , uWG3
n ), taking each of the nT = 1001

timesteps for 0 ≤ t ≤ 300 s.
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Case Study: internal waves

0.01
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Data
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0.00
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)
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0 50 100 150 200 250 300
t (s)

0.01
0.00
0.01

WG3

Experimental data and prior mean, up to

time t = 300s.

KdV posterior mean across space-time

grid.
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Case study: internal waves

StatFEM posterior measure p(un | y1:n,Λ) for the KdV equation: posterior at WG locations

(left); posterior wave profile u(s, t) for t = {75, 150, 225} s (right).
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Internal Waves: Takeaways

• Assimilated data with KdV equation: allows for physics-informed interpolator,

with an interpretable posterior distribution.

• Uncertainty quantification is sensible and enables the calibration of simpler

physical models with potentially sparse data.

• Conjecture: physically sensible way of incorporating nonstationarity into GP-type

models → nonstationarity driven by dynamics.
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Case Study: Reaction-Diffusion

Apply the statFEM methodology to the Oregonator system of equations:7

ut =
1

ε

(
u(1− u)− fv

u − q

u + q

)
+ Du∇2u + ξ̇u,

vt = u − v + Dv∇2v + ξ̇v ,

u := u(x , t), v := v(x , t), x ∈ [0, L]× [0, L], t ∈ [0,T ],

using zero-flux boundary conditions.

Sparse measurements and misspecified initial conditions; “spiral-wave” regime:

(f , q, ε) = (2, 0.002, 0.02), (Du,Dv ) = (1, 0.6).

Stochastic Oregonator system implicitly defines the prior distribution: set ξu = 0,

induce uncertainty through v -component:

ξv (x , t) ∼ GP(0, δ(t − t ′) · kθ(x , x ′)), kθ(x , x
′) = ρ2 exp(−∥x − x ′∥22/(2ℓ2)).

7Connor Duffin et al. “Low-Rank Statistical Finite Elements for Scalable Model-Data
Synthesis”. Journal of Computational Physics (Aug. 2022).
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Case Study: Reaction-Diffusion

• Discretise to give un and vn — the FEM coefficients at time n∆t — and compute

joint posterior with LR-ExKF:

p (un, vn | y1:n,Λ, θ) ∼ N (mn,LnL
⊤
n ).

• StatFEM posterior mean has blurred initial condition: model is misspecified

through incorrect initialisation.

• Noisy data, only single component observed: yn = Hvn + ηn, ηn ∼ N (0, σ2I).

Initial conditions: statFEM (left) and true (right). We observe the vn component only =⇒ un
misspecified and unobserved.
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Case Study: Reaction-Diffusion

Top: statFEM posterior means (mu
n,m

v
n) and observed data (yn) at time t = 5. Bottom:

statFEM posterior variances (diag(Cn)) on the u and v components, at time t = 5.
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Case Study: Reaction-Diffusion

Leading-order covariance modes for the spiral-wave problem =⇒ variance decomposes

surrounding the main spiral feature.
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Case Study: Reaction-Diffusion

Relative errors show the data generating process is

tracked:

∥mu
n − uDGP

n ∥2
∥uDGP

n ∥2
,

∥mv
n − vDGP

n ∥2
∥vDGP

n ∥2
.

Effective rank of covariance:

Deff =

∑k
j=1

√
λj∑k

j=1 λj

.
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Reaction Diffusion: Takeaways

• Low-rank approximation scales the method to high dimensionalities, enabling

application of the method to complex “real world” systems.

• Uncertainty quantification is again sensible, and initial condition misspecification

is calibrated with data.

• Enables inference in systems which may be partially observed.
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Unknown Indirect Observation Operator

What if observation operator is unknown?

• That is, what if yn = Gθ(un) + εn, for some learnable function Gθ(·).
• Use neural nets to learn this embedding from unstructured data into known

mechanistic description.

• Mechanistic information used to identify the embedding: not to learn

approximations to solution fields.

• Example: process is recorded with video camera, multi-channel recordings are

taken (e.g., audio data).

How can we synthesise the phenomena with the mechanistic representation when we

do not have an observation model?
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Unknown observation operator: some examples

Measurement

h2

h1
u(x, t)

H = 0.3m

L = 6m

WG1 WG2 WG3

Observed internal wave.

Phenomena Mechanistic Representation

Example: Korteweg-de Vries equation:

∂tu + αuux + βuxxx + cux = 0.

Observed species

concentrations.

Example: Gray-Scott equation:

∂tu = Du∇2u − uv2 + F (1− u),

∂tv = Dv∇2v + uv2 − (F + k)v .
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Unknown Observation Operator

Phenomena Mechanistic

Representation

KdV equation:

∂tu+αuux+βuxxx+cux = 0.

• Observation operator can be approximated with deep neural networks.

• We posit an observation operator of the form:

p(yn|un) = N (Gϕ(un),R), G : Rnu → Rny×nc .

• Learn this embedding of the data to observations of the mechanistic system in a

variational inference framework.
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Φ-DVAE8

• Phenomenological data received through time: y1:N (e.g., video feeds).

• Encoded to latent mechanistic observations x1:N using a variational autoencoder

(VAE) (Kingma and Welling).

• Mechanistic representation embedded into latent space, driving latent stochastic

dynamics with statFEM.

Decoder

Encoder

Pseudo-observations

Latent Dynamics

Dynamic Parameters

8Alex Glyn-Davies et al. Φ-DVAE: Physics-Informed Dynamical Variational
Autoencoders for Unstructured Data Assimilation, July 2023. arXiv: 2209.15609
[physics, stat].
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Φ-DVAE: Probabilistic Model Structure

We propose the following hierarchical probabilistic model:

• Parameter prior: Λ ∼ p(Λ).

• Transition density: un | un−1,Λ ∼ p(un | un−1,Λ) (assumed known form).

• Pseudo-observations: xn | un ∼ p(xn | un) (assumed known form).

• Decoder distribution: yn | xn ∼ pθ(yn | xn).

Following VAEs, we also introduce the “encoder” variational approximation,

qϕ(x1:N |y1:N) = N (µϕ, σϕ), and the parameter posterior p(Λ | y1:N) ≈ qλ(Λ).

How can we conduct joint parameter inference over {Λ, θ, ϕ}?
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Φ-DVAE: Variational Lower Bound

Encoding, decoding, and model parameters are all jointly learnt through optimising a

variational lower bound.

Evidence lower bound provides a tractable target for optimisation:

log p(y1:N) ≥ Eqϕ(x1:N |y1:N)

[
log

pθ(y1:N |x1:N)
qϕ(x1:N |y1:N)

+ Eqλ

[
log p(x1:N | Λ) + log

p(Λ)

qλ(Λ)

]]
.

First term: encoder/decoder. Second term: pseudo-observations

p(x1:N | Λ) =
∫

p(u1:N , x1:N | Λ) du1:N .

Marginalising over the dynamics acts as a “physics informed regulariser”. Third term:

variational parameter posterior KL divergence.
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Φ-DVAE: Simulation Studies

• We now go through a selection of simulation studies using Φ-DVAE.

• We look at (variational) parameter inference and filtering inference, p(u1:n|x1:n).
• We look at 2 particular systems: the classic Lorenz-63 system, and the (hopefully,

now-familiar) KdV equation.

• We simulate synthetic data consisting of velocity fields, for the Lorenz-63 case,

and video data, for the KdV case. These are our y1:N .

• We aim to learn the mapping from y1:N → x1:N , thus inferring the latent state un,

conditioned on y1:n.
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Lorenz-63 Dynamical System: Illustrative Example

Data y1:N are simulated velocity field measurements, which are modulated by the first
dimension of a latent stochastic Lorenz-63 system:

du1 = −σu1 + σu2 + dw1, du2 = −u1u3 + ru1 − u2 + dw2, du3 = u1u2 − bu3 + dw3,

so now Λ = σ, p(Λ) = N (30, 52), and qλ(Λ) = N (µλ, σ
2
λ).
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Lorenz-63: State and Parameter Inference
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Left: “trace plot” of parameter variational distribution qλ(Λ) = N (µλ, σ
2
λ), with mean (blue)

and ±2 standard deviations (blue fill). Right: filtering inference for latent states u1:N , where

the filtering distribution p(un|x1:n) is plotted with the ground truth utruen .
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Lorenz-63: Rolling Out Beyond Training
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“Rollout”: training time indicated with grey-fill, with (left) showing samples generated with the

prior (left), and the posterior (right) variational distribution qλ(·).
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KdV: Learning the Observation Operator and Drag Coefficient

• In this final example we return to KdV: we generate synthetic video data (a

sequence of images), giving our y1:N , from a governing KdV equation:

∂tu + αuux + βuxxx + νu = ξθ.

We jointly estimate the embedding and the drag coefficient ν, so Λ = ν,

p(Λ) = LN (2, 0.52), qλ(Λ) = LN (µλ, σ
2
λ).

• Weakly-informative log-normal prior for the drag coefficient as ν > 0.

• Encoding and decoding networks are MLPs with 3 hidden layers of width 128.
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KdV: Learning the Observation Operator and Drag Coefficient

Decoder

Encoder

Pseudo-observations

Latent Dynamics

Dynamic Parameters

A reminder: video frames y1:N are encoded to pseudo-observations x1:N of a latent dynamical

system with a known transition density p(un | un−1,Λ). Φ-DVAE infers the encoder qϕ(·), the
decoder pθ(· | y1:N), and parameters qλ(·).
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KdV: Results with drag coefficient estimation
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Results for KdV with drag: (left) comparison of prior and variational posterior for model

parameter ν = 1. Right: latent filtering distribution for prior and posterior parameter estimates.
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Conclusions

StatFEM synthesises data and FEM models via the posterior

p(un | y1:n,Λ).
• Works in nonlinear, time-dependent models, enabling

interpolation and inference in sparse data settings.

• Quantifies uncertainty and robust to model

misspecification.

• Demonstrated through structural mechanics, fluid

dynamics, nonlinear oscillators, and machine learning

extensions.

All code on Github!

More broadly: statFEM broadly provides a fundamental methodology to underpin

modern digital twin models; which is derived from a statistically coherent construction.
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