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Introduction and Background

Gaussian Process (GP) Interpolation

- Given training data (x1, f (x1), . . . , (xN , f (xN)), estimate the unknown
data-generating function f (x).

- By specifying a GP prior f ∼ GP(0, k) as with kernel k , GP interpolation
produces the GP posterior of f with posterior mean mN(x) and posterior
covariance kN(x , x ′):

mN(x) := k(x , x)>k(x, x)−1f (x), (1a)

kN(x , x ′) := k(x , x ′)− k(x , x)>k(x, x)−1k(x ′, x), (1b)

where

x := [x1, . . . , xN ]>, f (x) := [f (x1), . . . , f (xN)]> ∈ RN ,

k(x , x) := [k(x , x1), . . . , k(x , xN)]> ∈ RN , k(x, x) := (k(xi , xj)) ∈ RN×N .
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Introduction and Background

Gaussian Process (GP) Interpolation

- Posterior mean mN(x) is used for predicting f (x).

- Posterior variance kN(x) := kN(x , x) is used for uncertainty quantification
(UQ) of f (x).

- Many applications: Probabilistic numerics, Bayesian optimization, etc.

Challenge: Hyper Parameter Selection
- Both prediction and UQ performance depend on the choice of kernel
parameters (or the kernel itself).

- This talk focuses on UQ performance.
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Introduction and Background

Credible Intervals

- For a constant α > 0, a credible interval for f (x) can be defined as

[mN(x)− α
√
kN(x), mN(x) + α

√
kN(x)].

(e.g., α ≈ 1.96 for a 95 % credible interval.)

- We want the interval to include the true f (x), i.e.,

mN(x)− α
√
kN(x) ≤ f (x) ≤ mN(x) + α

√
kN(x)

m

−α ≤ f (x)−mN(x)√
kN(x)

≤ +α
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Introduction and Background

Asymptotically Well-calibrated Credible Intervals

−α ≤ f (x)−mN(x)√
kN(x)

≤ +α

- Therefore, for the interval to be well-calibrated, the posterior std
√
kN(x)

and the prediction error |f (x)−mN(x)| should decrease to 0 at the same
speed as N →∞.

If
√
kN(x)→ 0 faster than |f (x)−mN(x)| → 0, then the interval will

not contain the true f (x) as N →∞ (overconfident).
If
√

kN(x)→ 0 slower than |f (x)−mN(x)| → 0, then the interval will
get looser as N →∞ (underconfident).

- If
√
kN(x)→ 0 and |f (x)−mN(x)| → 0 at the same speed, we say the

interval is asymptotically well-calibrated.
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Introduction and Background

The Issue

- The issue is that, the posterior variance kN(x) does not depend on
observations f (x1), . . . , f (xN).

kN(x) = k(x , x)− k(x , x)>k(x, x)−1k(x , x),

- Thus,
√
kN(x) does not decay at the same rate as |f (x)−mN(x)| in

general.

Exception: when the prior f ∼ GP(0, k) is correct (well-specified).
But in general f ∼ GP(0, k) cannot be perfectly correct (misspecified).
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Introduction and Background

Examples

Figure 1: Left: when true f is coarser. Right: when true f is smoother.
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Introduction and Background

Scale Parameter

- To address the above issue, one must adapt the kernel k to the data
f (x1), . . . , f (xN).

- A simple way is to introduce a scale parameter σ2 > 0, parameterize the
kernel as

kσ(x , x ′) := σ2k(x , x ′).

and estimate σ2 from the data f (x1), . . . , f (xN).

- We discuss two estimators for the scale parameter σ2: Maximum Likelihood
(ML) and Cross Validation (CV).

ML: maximizing the marginal likelihood.
CV: maximizing the held-out (log) likelihood, averaged over CV splits.
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Introduction and Background

ML and CV Estimators for the Scale Parameter

- For the scale parameter, both ML and CV estimators can be derived
analytically (and can be computed in O(N3) time complexity).

ML estimator:

σ̂2
ML =

f (x)>k(x, x)−1f (x)

N
=

1
N

N∑
n=1

[f (xn)−mn−1(xn)]2

kn−1(xn)
,

where mn−1 and kn−1 are the posterior mean and variance functions based
on the first n − 1 training observations (x1, f (x1)), . . . , (xn−1, f (xn−1)).

Leave-one-out (LOO) CV estimator:

σ̂2
CV =

1
N

N∑
n=1

[
f (xn)−m\n(xn)

]2
k\n(xn)

,

where m\n and k\n are the posterior mean and variance functions with
(xn, f (xn)) removed: {(x1, f (x1)), . . . , (xN , f (xN))}\(xn, f (xn)).
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Introduction and Background

ML and CV Estimators for the Scale Parameter

σ̂2
ML =

1
N

N∑
n=1

[f (xn)−mn−1(xn)]2

kn−1(xn)
, σ̂2

CV =
1
N

N∑
n=1

[
f (xn)−m\n(xn)

]2
k\n(xn)

,

- The CV estimator uses each data more evenly than the ML estimator?

Questions:

- How does this difference affect their asymptotic behaviours as N →∞?

- Do these estimates give asymptotically well-calibrated credible intervals?

- Which one is better in terms of UQ?
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Introduction and Background

(Closely) Related Work

- Most previous works consider well-specified settings where there exists a
“true” scale parameter σ2

0;
e.g., [Ying, 1991, Zhang, 2004, Bachoc et al., 2017, Bachoc et al., 2020].

- However, in general, there exists no such “true σ2
0”.

- In such misspecified settings, both ML and CV estimators’ asymptotic
properties are not well understood.

[Karvonen et al., 2020, Wang, 2021] derive upper bounds (and lower
bounds in some cases) for the ML estimator (assuming deterministic f ).
To our knowledge, there is no theoretical result for the CV estimator.
[Bachoc, 2013, Petit et al., 2022] empirically compare the ML and CV
estimators under different model misspecification settings.
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Contributions and Problem Setting

Our Contributions

- This work analyses the asymptotic behaviours of the CV and ML estimators
of the scale parameter.

This is the first analysis for the CV estimator.
We also obtain new results for the ML estimator.

- To facilitate the analysis, we focus on the following setting.

1) Noise-free observations (Interpolation): f (x1), f (x2), . . . , f (xN).

2) Quasi-uniform input points: 0 ≤ x1 < x2 < · · · < xN ≤ 1.
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Contributions and Problem Setting

Problem Setting

3) Brownian motion prior: the kernel is

k(x , x ′) = min(x , x ′), x , x ′ ∈ [0, 1].

– Then f ∼ GP(0, k) is a Brownian motion.

– The smoothness of the model is 1/2 (in terms of differentiability).
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Contributions and Problem Setting

Problem Setting

4) True f ’s smoothness is 0 < `+ H < 2. (` ∈ {0, 1}, 0 < H < 1.):

- When ` = 0 and 0 < H < 1: We assume f to be a fractional Brownian
motion with Hurst parameter H. We write fFBM ∼ GP(0, k0,H).1

— Smoothness H. When H = 1/2, this is a standard Brownian motion.

- When ` = 1 and 0 < H < 1: We define f as the integral of
fFBM ∼ GP(0, k0,H) (i.e., an integrated fractional Brownian motion).

fiFBM(x) =

∫ x

0
fFBM(t)dt.

— Smoothness 1 + H.

1k0,H(x , x
′) = 1

2 (|x |
2H + |x ′|2H − |x − x ′|2H)
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Main Results on Asymptotics

Asymptotics of CV and ML Estimators (` = 0, 0 < H < 1)

Theorem (when ` = 0 and 0 < H < 1):

E[σ̂2
CV] = Θ(N1−2H), E[σ̂2

ML] = Θ(N1−2H).

- CV and ML have the same asymptotic properties.

When 0 < H < 1/2: True f is rougher than the GP prior.

1− 2H > 0 =⇒ σ̂2
CV, σ̂

2
ML increase as N increases.

=⇒ Correcting the small posterior var kN(x) (overconfidence)

- Recall that the posterior variance with the scale parameter is σ̂2kN(x)
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Main Results on Asymptotics

When the True Function is Rougher (`+ H = 0.2)

Figure 2: Left: no scale parameter; Right: with the CV estimator. (ML yields
similar credible intervals.)
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Main Results on Asymptotics
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E[σ̂2
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ML] = Θ(N1−2H).

When H = 1/2: The GP prior (Brownian motion) is well-specified.

1− 2H = 0. =⇒ σ̂2
CV, σ̂

2
ML converge to th “true value” σ2

0 as N →∞
increases.

When 1/2 < H < 1: True f is smoother than the GP prior.

1− 2H < 0. =⇒ σ̂2
CV, σ̂

2
ML decrease as N →∞.

Correcting the large posterior var kN(x) (underconfidence).
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Main Results on Asymptotics

Asymptotics of CV and ML Estimators (1 < `+ H ≤ 1.5)
Theorem (when ` = 1 and 0 < H ≤ 0.5):

E[σ̂2
CV] = Θ(N−1−2H), E[σ̂2

ML] = Θ(N−1).

CV adapts to the true smoothness 1 + H (correcting underconfidence).
ML does not adapt (underconfidence not corrected ⇒ conservative
credible intervals).
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Main Results on Asymptotics

When the True Function is Smoother (`+ H = 1.5)

Figure 3: Left: with the CV estimator; Right: with the ML estimator.
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Main Results on Asymptotics

Asymptotics of CV and ML Estimators (1.5 < `+ H < 2)

Theorem (when ` = 1 and 0.5 < H < 1):

E[σ̂2
CV] = Θ(N−2), E[σ̂2

ML] = Θ(N−1).

CV also no longer adapts (while yielding tighter intervals than ML).

- These asymptotic rates of CV and ML have been empirically confirmed (for
different smoothness settings); please see our paper if interested.
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Consequences to Credible Intervals

Consequences to Credible Intervals

- For σ̂ = σ̂CV or σ̂ = σ̂ML, a credible intervals may be given as

[mN(x)− ασ̂
√

kN(x), mN(x) + ασ̂
√
kN(x)].

(e.g., α ≈ 1.96 for a 95 % credible interval.)

- This interval is asymptotically well-calibrated if

|f (x)−mN(x)| and σ̂
√
kN(x)

decrease to 0 as N →∞ at the same rate.

- For CV and ML, can this hold? (and if so, when?)

- To study this question, we consider the ratio

|f (x)−mN(x)|
σ̂
√

kN(x)
.

- It is necessary that this neither converge to 0 nor diverge to ∞ as N →∞.
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Consequences to Credible Intervals

Consequences to Credible Intervals (0 < `+ H < 1)

- Recall that true f is assumed to be f ∼ GP(0, k`,H) (smoothness `+ H).

Theorem (when ` = 0 and 0 < H < 1)

sup
x∈[0,1]

E[f (x)−mN(x)]2

Eσ̂2
CVkN(x)

= Θ(1),

sup
x∈[0,1]

E[f (x)−mN(x)]2

Eσ̂2
MLkN(x)

= Θ(1),

- Both CV and ML are asymptotically well-calibrated (on average)
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Consequences to Credible Intervals

Consequences to Credible Intervals (1 < `+ H ≤ 1.5)

Theorem (when ` = 1 and 0 < H ≤ 1/2)

sup
x∈[0,1]

E[f (x)−mN(x)]2

Eσ̂2
CVkN(x)

= Θ(1),

sup
x∈[0,1]

E[f (x)−mN(x)]2

Eσ̂2
MLkN(x)

= Θ(N−2H),

- CV is asymptotically well-calibrated.

- ML is asymptotically underconfident.

27 / 30



Consequences to Credible Intervals

Consequences to Credible Intervals (1.5 < `+ H < 2)

Theorem (when ` = 1 and 1/2 < H ≤ 1)

sup
x∈[0,1]

E[f (x)−mN(x)]2

Eσ̂2
CVkN(x)

= Θ(N1−2H),

sup
x∈[0,1]

E[f (x)−mN(x)]2

Eσ̂2
MLkN(x)

= Θ(N−2H),

- Both are asymptotically underconfident.

- The ratio decreases more slowly with CV than ML (CV is relatively less
conservative).
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Conclusion and Future Directions
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Conclusion and Future Directions

Conclusion and Future Directions

- Under specific settings (one-dimension, Brownian motion prior, scale
parameter estimation), we have shown, for the first time, quantitatively that
the CV estimator is better than the ML estimator in terms of UQ.

- Future work should study whether similar results hold in other settings (e.g.,
smoother priors, other hyperparameters, noisy observations).

- Other results (e.g., when the true function is deterministic) are also
available in our paper:

Comparing Scale Parameter Estimators for Gaussian Process Regression:
Cross Validation and Maximum Likelihood
Naslidnyk, M., Kanagawa, M., Karvonen, T., Mahsereci, M. (2023).
arXiv preprint arXiv:2307.07466.
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Conclusion and Future Directions

Bachoc, F. (2013).
Cross validation and maximum likelihood estimations of
hyper-parameters of Gaussian processes with model misspecification.
Computational Statistics & Data Analysis, 66:55–69.

Bachoc, F., Betancourt, J., Furrer, R., and Klein, T. (2020).
Asymptotic properties of the maximum likelihood and cross validation
estimators for transformed Gaussian processes.
Electronic Journal of Statistics, 14(1):1962–2008.

Bachoc, F., Lagnoux, A., and Nguyen, T. M. N. (2017).
Cross-validation estimation of covariance parameters under fixed-domain
asymptotics.
Journal of Multivariate Analysis, 160:42–67.

Karvonen, T., Wynne, G., Tronarp, F., Oates, C. J., and Särkkä, S.
(2020).
Maximum likelihood estimation and uncertainty quantification for
Gaussian process approximation of deterministic functions.
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Conclusion and Future Directions

SIAM/ASA Journal on Uncertainty Quantification, 8(3):926–958.

Petit, S., Bect, J., Feliot, P., and Vazquez, E. (2022).
Parameter selection in Gaussian process interpolation: An empirical
study of selection criteria.
arXiv:2107.06006v4.

Wang, W. (2021).
On the inference of applying Gaussian process modeling to a
deterministic function.
Electronic Journal of Statistics, 15(2):5014–5066.

Ying, Z. (1991).
Asymptotic properties of a maximum likelihood estimator with data
from a Gaussian process.
Journal of Multivariate Analysis, 36(2):280–296.

Zhang, H. (2004).
Inconsistent estimation and asymptotically equal interpolations in
model-based geostatistics.

30 / 30



Conclusion and Future Directions

Journal of the American Statistical Association, 99(465):250–261.
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