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Stellar evolution: what? why? how?

e Starsevolve!
They are born and die
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Stellar evolution: what? why? how?

e Stars evolvel

often in pairs, triplets, ...

e Dying stars lose mass

in outwards-directed stellar winds

enriching the Universe with their chemi

e Massive stars (28M ;) can under re-collapse yielding supernovae
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Stellar evolution:

Chemical history

why?
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Context — A&A: from stellar winds to supernovae

Stellar evolution: why?

next-gen stars,

planets, .., life?
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Context — A&A: from stellar winds to supernovae

Stellar evolution: why?

Big Bang Nucleosynthesis
Asymptotic Giant Branch Stars
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Stellar evolution: how?

Simulations

Stellar wind model

e Hydrodynamics S e

e Radiation Transport (!)

e Micro-physics / chemistry
o Quantum statistical state

o Chemical kinetics (1) Malfait et al. (2021), Maes et al. (2021),
Siess et al. (2022), Esseldeurs et al. (2023), ...
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Stellar evolution: how?

Observations Simulations

How to compare?

Malfait et al. (2021), Maes et al. (2021),
ATOMIUM: ALMA Large Program, Decin et al. (2020) |l Siess et al. (2022), Esseldeurs et al. (2023), ...
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Stellar evolution: how?

Observations Reconstructions
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Context — A&A: from stellar winds to supernovae

Stellar evolution: how?

Observations Reconstructions (!)
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Y ROLY 161\ ARV VN =T (o[ igole]r=Ina MBS RS- IMEAZI)N | FDC, Ceulemans, Decin, Danilovich, & Yates (2024)
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Goals — Need for Probabilistic Numerics in ARA

Fast / approximate, but quantifiably / tunably accurate models

e.g. Radiation Transport, Chemical Kinetics

Large uncertainties on various input parameters

e.g. spectroscopic data, chemical reaction rates

Highly degenerate inverse problems

e.g. model reconstructions



Goals — Need for Probabilistic Numerics in ARA

Note

e Typical problem scale (~ 10° — 10° particles, elements, ...)

e Many, very different components all working together

= uncertainties have to be propagated

e Non-linear components
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Application 1 — Radiation Transport

How would our models appear in observations?

How much:

Radiative cooling? Photochemistry? Radiative pressure on dust?



Application 1 — Radiation Transport

Radiative Transfer equation

n-Viz,n) = nle,n) — x(x,n)l(x,n) + ]{dfﬁ,’ ol

emission absorption

n

Y

n

) 1(,

n



Application 1 — Radiation Transport

Radiative Transfer equation

n-VI(z,n) = n(x,n) — x(z,n)I(x,n) + ¢dn" Ona)I(z,n'

emission absorption

L2
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Application 1 — Radiation Transport as Regression

Radiative Transfer as a Bayesian Linear Regression problem
FDC, Ceulemans, Cockayne, Decin, & Yates (MNRAS, 2023)

"A&A intro to Probabilistic Numerics applied to Radiative Transfer”

(Actually 2 consecutive Bayesian Linear Regression problems, given Xand 77)

L2

optical depth ~ T(%1,%2) = / dz’ x(z')
x

1
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Application 1 — Radiation Transport as Regression

GP interpolate absorption X and emissivity 1) with the same kernel K
p(x) = N(N)@ 2x)

p(n) = N(Nnazn)

with mean functions

p(x) = x! K;l k(x,x); K, = k(z,z) + 32,

pn(z) = n' K*k(w, 2); K, = k(z,z) + 3,
and covariance kernels

Sy(@1,22) = K(z1,22) — K(z1, @) K K(, 22)

Yn(x1,22) = K(x1,22) — K(x1, ) K;l k(x, x3)



Application 1 — Radiation Transport as Regression

As a result, the intensity 1 and optical depth 7 follow distributions

p(r) = N(pr, Er)
p([|’7’) — N(/‘LHT)ZHT)

with mean functions
pr(z1,9) = [ da’ p,(z) (optical depth)

i (m2) = [da’ p,(a')e 7@ (formal solution)
and covariance kernels

So(@1,m0) = [ Az} [ da) So(a), 7))

@ Tq
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Application 1 — Radiation Transport as Regression
Using the results, given the optical depth 7
prie(z2) = [ da’ pp(z') e 7"
Yrr(x1,22) = 72 dx} 1]2 dxby 3, (27, 75) e (@1, 21) o= T(@5, 72)

From the law of total expectation
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Application 1 — Radiation Transport as Regression

Example
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Application 1 — Radiation Transport as Regression

Added value of probabilistic numerics

(1) Fast / approximate, but quantifiably / tunably accurate models

e.g. creating reduced-order models by mapping GP to feature space

(1) Modelling the impact of uncertainties on the input and discretisation

Issue with current implementation

(1) Large computational cost — replace with iterative GP (cfr. Monday)
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Application 2 — Chemical Kinetics

How much of a particular atom or molecule is present at each point?

Described by a set of coupled non-linear ODEs,
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Application 2 — Chemical Kinetics

How much of a particular atom or molecule is present at each point?

Described by a set of coupled non-linear ODEs,
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~5000 reactions .. and this for every point in the simulation!



Application 2 — Chemical Kinetics Surrogate Model

In

> out

Classical dynamics

= Aiing 4+ Bijgning n(At)

Latent / surrogate dynamics

dz,

dt

= Co + Aapzs + Bapr 252+ | n(At)

torchode (Lienen & Glinnemann 2022)

Maes, FDC, Van de Sande, & Decin (2024)



Application 2 — Chemical Kinetics

Potential added value of probabilistic numerics

()  Modelling the impact of large uncertainties on reaction rates
(1) Modelling the impact of the dimensional reduction

() Inform dimensional reduction process
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Application 3 — Bayesian model reconstruction

How to create realistic 3D models based on (spectral line) observations?

Observation
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ATOMIUM: ALMA Large Program, Decin et al. (2020)

Reconstruction

L3

FDC, Ceulemans, Decin, Danilovich, & Yates (2024)




Application 3 — Bayesian model reconstruction

How to create realistic 3D models based on (spectral line) observations?

Observation Reconstruction

_p(o|m)p(m)
p (o)

L3

PN provides likelihood
Physics provides prior

Y ROLY 161\ ARV VN =T (o[ igole]r=Ina MBS RS- IMEAZI)N | FDC, Ceulemans, Decin, Danilovich, & Yates (2024)




Application 3 — Bayesian model reconstruction

Potential added value of probabilistic numerics
(') Modelling the large degeneracy

(1) Better idea of likelihood including model uncertainties



Summary — Probabilistic Numerics in A&A

e Fast/ approximate, but quantifiably / tunably accurate models

e.g. Radiation Transport, Chemical Kinetics

e Large uncertainties on various input parameters

e.g. spectroscopic data, chemical reaction rates

o Highly degenerate inverse problems

e.g. model reconstructions
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Backup — Observations
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Backup — Observations
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