Scalable Gaussian Process Regression with Gauss-Legendre Features

Paz Fink Shustin

University of Oxford

Probabilistic Numerics Spring School Southampton, April 2024

Joint work with Haim Avron

Mathematical Institute

Talk Outline

- Gaussian Processes: From Linear to Functional Model
- ② Gauss-Legendre Features
- 3 Parameter Computation
- 4 Spectral Equivalence
- 6 Efficient Computions

Linear Regression in Bayesian Modeling

Given:
$$\mathcal{D} = \{(\mathbf{x}_i, y_i) | i = 1, \dots, n\} \subset \mathbb{R}^d \times \mathbb{R}.$$

Let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]^\mathsf{T}.$

Bayesian linear regression model:

$$f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{w}, \quad y = f(\mathbf{x}) + \varepsilon, \quad \varepsilon \stackrel{i.i.d}{\sim} \mathcal{N}(0, \sigma_n^2).$$

- We specify a prior over the parameters: $\mathbf{w} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Sigma}
 ight)$.
- Gives rise to the likelihood: $p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \mathcal{N}(\mathbf{X}\mathbf{w}, \sigma_n^2 \mathbf{I})$.

Bayesian Modeling

Bayesian analysis is based on Bayes rule:

where the marginal-likelihood is:

$$p\left(\mathbf{y}|\mathbf{X}\right) = \int p\left(\mathbf{y}|\mathbf{X},\mathbf{w}\right) p\left(\mathbf{w}\right) d\mathbf{w}$$

Thus, the **posterior** can be derived:

$$p\left(\mathbf{w}|\mathbf{y},\mathbf{X}\right) \propto \mathcal{N}\left(\sigma_{n}^{-2}\left(\sigma_{n}^{-2}\mathbf{X}^{\mathsf{T}}\mathbf{X} + \boldsymbol{\Sigma}^{-1}\right)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}, \left(\sigma_{n}^{-2}\mathbf{X}^{\mathsf{T}}\mathbf{X} + \boldsymbol{\Sigma}^{-1}\right)^{-1}\right) \,.$$

Feature Maps in Function-space View

Replace \mathbf{x} with $\phi(\mathbf{x})$, and write $f(\mathbf{x}) = \phi(\mathbf{x})^{\mathsf{T}} \mathbf{w}$ with a prior $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$. Then:

$$\mathbb{E}[f(\mathbf{x})] = \phi(\mathbf{x})^{\mathsf{T}} \mathbb{E}[\mathbf{w}] = 0$$
$$\mathbb{E}[f(\mathbf{x})f(\mathbf{x}')] = \phi(\mathbf{x})^{\mathsf{T}} \mathbb{E}\left[\mathbf{w}\mathbf{w}^{\mathsf{T}}\right] \phi(\mathbf{x}') = \phi(\mathbf{x})^{\mathsf{T}} \boldsymbol{\Sigma} \phi(\mathbf{x}')$$

Feature Maps in Function-space View

Replace \mathbf{x} with $\phi(\mathbf{x})$, and write $f(\mathbf{x}) = \phi(\mathbf{x})^{\mathsf{T}} \mathbf{w}$ with a prior $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$. Then:

$$\mathbb{E}[f(\mathbf{x})] = \phi(\mathbf{x})^{\mathsf{T}} \mathbb{E}[\mathbf{w}] = 0$$
$$\mathbb{E}[f(\mathbf{x})f(\mathbf{x}')] = \phi(\mathbf{x})^{\mathsf{T}} \mathbb{E}\left[\mathbf{w}\mathbf{w}^{\mathsf{T}}\right] \phi(\mathbf{x}') = \phi(\mathbf{x})^{\mathsf{T}} \boldsymbol{\Sigma} \phi(\mathbf{x}')$$

defining the feature map $\psi(\mathbf{x}) = \Sigma^{1/2} \phi(\mathbf{x}')$ yields $k(\mathbf{x}, \mathbf{x}') = \psi(\mathbf{x})^{\mathsf{T}} \psi(\mathbf{x}) \Rightarrow$ the *kernel trick*.

Figure: Reproducing Kernel Hilbert Space.

Feature Maps in Function-space View

For example: consider data $\mathbf{x} \in \mathbb{R}^2$.

Feature map Kernel

$$\psi(\mathbf{x}) = (x_1, x_2, x_1^2 + x_2^2) \qquad k(\mathbf{x}, \mathbf{x}') = \mathbf{x} \cdot \mathbf{x}' + \|\mathbf{x}\|_2^2 \|\mathbf{x}'\|_2^2$$

Some Popular Kernels

- Polynomial: $k(\mathbf{x}, \mathbf{x}') = (\gamma \mathbf{x}^{\mathsf{T}} \mathbf{x}' + c)^{q}$.
- Exponential: $k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x}-\mathbf{x}'\|_2}{\sigma}\right)$.
- Gaussian: $k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x}-\mathbf{x}'\|_2^2}{2\sigma^2}\right)$
- Matérn: $k(\mathbf{x}, \mathbf{x}') = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu}}{\ell} \|\mathbf{x} \mathbf{x}'\|_2 \right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}}{\ell} \|\mathbf{x} \mathbf{x}'\|_2 \right).$
- Periodic kernel: $k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{2\sin^2(\pi \|\mathbf{x}-\mathbf{x}'\|_2/p)}{\sigma^2}\right)$.

Figure: Matérn kernel.

Gaussian Processes

Definition

A Gaussian Process (GP) is a finite collection of random variables, which have a joint Gaussian distribution.

Gaussian Processes

Definition

A *Gaussian Process* (GP) is a finite collection of random variables, which have a joint Gaussian distribution.

Assume that $f(\mathbf{x}) \sim \mathcal{GP}\left(\mu\left(\mathbf{x}\right), k(\mathbf{x}, \mathbf{x}')\right)$, where:

- The mean is $\mu(\mathbf{x})\coloneqq \mathbb{E}\left[f(\mathbf{x})
 ight]$ (usually $=\mathbf{0}$).
- The covariance is:

 $k(\mathbf{x}, \mathbf{x}') \coloneqq \mathbb{E}\left[\left(f(\mathbf{x}) - \mu(\mathbf{x})\right)\left(f(\mathbf{x}') - \mu(\mathbf{x}')\right)\right].$

Gaussian Processes

Definition

A *Gaussian Process* (GP) is a finite collection of random variables, which have a joint Gaussian distribution.

Assume that $f(\mathbf{x}) \sim \mathcal{GP}\left(\mu\left(\mathbf{x}\right), k(\mathbf{x}, \mathbf{x}')\right)$, where:

- The mean is $\mu(\mathbf{x})\coloneqq \mathbb{E}\left[f(\mathbf{x})
 ight]$ (usually $=\mathbf{0}$).
- The covariance is: $k(\mathbf{x}, \mathbf{x}') \coloneqq \mathbb{E} \left[\left(f(\mathbf{x}) - \mu(\mathbf{x}) \right) \left(f(\mathbf{x}') - \mu(\mathbf{x}') \right) \right].$

For any $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \mathbb{R}^d$, the vector $\mathbf{f} = [f(\mathbf{x}_1), \ldots, f(\mathbf{x}_m)]^\mathsf{T}$ is Gaussian random vector with covariance matrix $\mathbf{K}(\mathbf{X}, \mathbf{X})$ defined by $\mathbf{K}_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$.

Gaussian Processes Regression

- The prior is Gaussian $\mathbf{f}|\mathbf{X}\sim\mathcal{N}\left(\mathbf{0},\mathbf{K}\right).$
- The log marginal-likelihood can be obtained:

$$\log p(\mathbf{y}|\mathbf{X}) = -\frac{1}{2}\mathbf{y}^{\mathsf{T}} \left(\mathbf{K} + \sigma_n^2 \mathbf{I}\right)^{-1} \mathbf{y} - \frac{1}{2} \log |\mathbf{K} + \sigma_n^2 \mathbf{I}| - \frac{n}{2} \log 2\pi$$

• The predictive mean and variance are

$$\begin{split} \mathbf{f}^{\star}(\mathbf{x}) &= \mathbf{K}(\mathbf{x}, \mathbf{X}) \left(\mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I}_n \right)^{-1} \mathbf{y} \\ \mathbf{f}^{\star}_{\mathsf{var}}(\mathbf{x}) &= \mathbf{K}(\mathbf{x}, \mathbf{x}) - \mathbf{K}(\mathbf{x}, \mathbf{X}) \left(\mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I}_n \right)^{-1} \mathbf{K}(\mathbf{x}, \mathbf{X})^* \\ O(n^3) \text{ is expensive!} \end{split}$$

Gaussian Processes Regression

Sampled functions from prior and posterior:

• Furher reading about GPs for machine learning ¹.

¹Christopher KI Williams and Carl Edward Rasmussen. *Gaussian processes* for machine learning, volume 2. MIT Press Cambridge, MA, 2006.

Maximum Likelihood

Typically, the kernel k_{θ} depends on a *hyperparameters* vector θ , determined by:

$$\boldsymbol{\theta}^{\star} = \arg \max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}), \quad \mathcal{L}(\boldsymbol{\theta}) = \log p\left(\mathbf{y} | \mathbf{X}, \boldsymbol{\theta}\right) \,.$$

- Global maximum is not guaranteed (local search).
- Optimization of $\mathcal{L}(\boldsymbol{\theta})$ is expensive.

Feature Maps

Denote $\theta = [\theta_0, \sigma_f^2, \sigma_n^2]$. Our method builds feature maps for kernel families $\{k_{\theta}\}_{\theta \in \Theta}$ that can be written as:

$$k_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \int_{\mathbb{R}^d} \varphi(\mathbf{x}, \boldsymbol{\eta}) \varphi(\mathbf{x}', \boldsymbol{\eta})^* p(\boldsymbol{\eta}; \boldsymbol{\theta}_0) d\boldsymbol{\eta} + \sigma_n^2 \delta_{\mathbf{x}, \mathbf{x}'}$$

where for every $oldsymbol{ heta}_0$, $p(\cdot;oldsymbol{ heta}_0)$ is an even on \mathbb{R}^d , and

$$\varphi(\mathbf{x}, \boldsymbol{\eta}) = \varphi(\mathbf{x}, -\boldsymbol{\eta})^* \, \forall \boldsymbol{\eta} \in \mathbb{R}^d$$
.

Feature Maps

Denote $\theta = [\theta_0, \sigma_f^2, \sigma_n^2]$. Our method builds feature maps for kernel families $\{k_{\theta}\}_{\theta \in \Theta}$ that can be written as:

$$k_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \int_{\mathbb{R}^d} \varphi(\mathbf{x}, \boldsymbol{\eta}) \varphi(\mathbf{x}', \boldsymbol{\eta})^* p(\boldsymbol{\eta}; \boldsymbol{\theta}_0) d\boldsymbol{\eta} + \sigma_n^2 \delta_{\mathbf{x}, \mathbf{x}'}$$

where for every $oldsymbol{ heta}_0$, $p(\cdot;oldsymbol{ heta}_0)$ is an even on \mathbb{R}^d , and

$$\varphi(\mathbf{x}, \boldsymbol{\eta}) = \varphi(\mathbf{x}, -\boldsymbol{\eta})^* \, \forall \boldsymbol{\eta} \in \mathbb{R}^d \,.$$

Important case:

A shift-invariant kernel $k(\mathbf{x}, \mathbf{x}') = k_0(\mathbf{x} - \mathbf{x}')$ can be written as (Bochner's theorem)

$$k_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \int_{\mathbb{R}^d} e^{-i(\mathbf{x} - \mathbf{x}')^{\mathsf{T}} \boldsymbol{\eta}} p(\boldsymbol{\eta}; \boldsymbol{\theta}_0) d\boldsymbol{\eta} + \sigma_n^2 \delta_{\mathbf{x}, \mathbf{x}'}.$$

Random Fourier Features Method

For shift-invariant kernels:

$$\begin{aligned} k_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{x}') &= \sigma_f^2 \int_{\mathbb{R}^d} e^{-i(\mathbf{x}-\mathbf{x}')^{\mathsf{T}}\boldsymbol{\eta}} p(\boldsymbol{\eta}; \boldsymbol{\theta}_0) d\boldsymbol{\eta} + \sigma_n^2 \delta_{\mathbf{x}, \mathbf{x}'} \\ &\approx \frac{\sigma_f^2}{s} \sum_{j=1}^s e^{-i(\mathbf{x}-\mathbf{x}')^{\mathsf{T}}\boldsymbol{\eta}_j} + \sigma_n^2 \delta_{\mathbf{x}, \mathbf{x}'} \\ &=: \tilde{k}_{\boldsymbol{\theta}}^{(\mathsf{RFF})}(\mathbf{x}, \mathbf{x}') \,. \end{aligned}$$

RFF ² is based on Monte-Carlo sampling, where η_1, \ldots, η_s are sampled from $p(\eta; \theta_0)$.

²Rahimi and Recht, *Random features for large-scale kernel machines*, NeurIPS (2008).

Random Fourier Features Method

For shift-invariant kernels:

$$\begin{aligned} k_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{x}') &= \sigma_f^2 \int_{\mathbb{R}^d} e^{-i(\mathbf{x}-\mathbf{x}')^{\mathsf{T}}\boldsymbol{\eta}} p(\boldsymbol{\eta}; \boldsymbol{\theta}_0) d\boldsymbol{\eta} + \sigma_n^2 \delta_{\mathbf{x}, \mathbf{x}'} \\ &\approx \frac{\sigma_f^2}{s} \sum_{j=1}^s e^{-i(\mathbf{x}-\mathbf{x}')^{\mathsf{T}}\boldsymbol{\eta}_j} + \sigma_n^2 \delta_{\mathbf{x}, \mathbf{x}'} \\ &=: \tilde{k}_{\boldsymbol{\theta}}^{(\mathsf{RFF})}(\mathbf{x}, \mathbf{x}') \,. \end{aligned}$$

RFF ² is based on Monte-Carlo sampling, where η_1, \ldots, η_s are sampled from $p(\eta; \theta_0)$.

• We have
$$k(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \mathbb{E}_{\boldsymbol{\eta}_1, \dots, \boldsymbol{\eta}_s} \left[\varphi(\mathbf{x}, \cdot)^* \varphi(\mathbf{x}', \cdot) \right]$$
 where $\varphi(\mathbf{x}, \boldsymbol{\eta}) = \sqrt{\frac{\sigma_f^2}{s}} \left(e^{-2\pi i \boldsymbol{\eta}_1^\mathsf{T} \mathbf{x}}, \dots, e^{-2\pi i \boldsymbol{\eta}_s^\mathsf{T} \mathbf{x}} \right)^*$.

 $^2 {\rm Rahimi}$ and Recht, Random features for large-scale kernel machines, NeurIPS (2008).

Reminder: Gauss-Legendre Quadrature

• Approximate (exactness holds for all $p \in \mathbb{P}_{2s-1}$)

$$\int_{\Omega} f(\boldsymbol{\eta}) p(\boldsymbol{\eta}) d\boldsymbol{\eta} \approx \sum_{j \in \{1, \dots, s\}^d} w_j f(\boldsymbol{\eta}_j) \, .$$

• Gauss-Legendre rule (uniform pdf): η_j are the roots of L_s and $w_j = \frac{2}{(1-\eta_j^2)(L'_s(\eta_j))^2}$.

Gauss-Legendre Features: Integral Error

(θ is fixed).

The goal: set U and s s.t. for every dataset $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathcal{X}$

$$(1-\Delta)\mathbf{K} \preceq \tilde{\mathbf{K}} \preceq (1+\Delta)\mathbf{K}$$
.

\$

Gauss-Legendre Features: Integral Error

(θ is fixed).

The goal: set U and s s.t. for every dataset $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathcal{X}$

$$(1-\Delta)\mathbf{K} \preceq \tilde{\mathbf{K}} \preceq (1+\Delta)\mathbf{K}$$
.

↕

$$\left|\int_{\mathbb{R}^d} f(\boldsymbol{\eta}) p(\boldsymbol{\eta}; \boldsymbol{\theta}_0) d\boldsymbol{\eta} - \sum_{j=1}^s w_j(\boldsymbol{\theta}) f(\boldsymbol{\eta}_j) p(\boldsymbol{\eta}_j; \boldsymbol{\theta}_0)\right| \leq \frac{\Delta}{\sigma_f^2}$$

where

$$f(\boldsymbol{\eta}) = \sigma_f^2 \mathbf{z}(\boldsymbol{\eta}) \mathbf{z}(\boldsymbol{\eta})^*, \quad \mathbf{z}(\boldsymbol{\eta}) \coloneqq [\varphi(\mathbf{x}_1, \boldsymbol{\eta}), \dots, \varphi(\mathbf{x}_n, \boldsymbol{\eta})]^\mathsf{T}.$$

Gauss-Legendre Features for Gaussian Process Regression

1. Truncate the integral

$$\approx \int_{\Pi_{k=1}^d [-U_k, U_k]} f(\boldsymbol{\eta}) p(\boldsymbol{\eta}; \boldsymbol{\theta}_0) d\boldsymbol{\eta}$$

Faster density decay \Leftrightarrow smaller U.

2. Approximate via Gauss-Legendre quadrature

$$\approx \sum_{j=1}^{s} w_j(\boldsymbol{\theta}) f(\boldsymbol{\eta}_j) p(\boldsymbol{\eta}_j; \boldsymbol{\theta})$$

 $\begin{array}{l} {\sf Faster \ Chebyshev's \ coefficients} \\ {\sf decay} \Leftrightarrow {\sf smaller} \ s. \end{array}$

 Decay of Chebyshev's coefficients for analytic functions.

• For most kernels:

$$s = \prod_{k=1}^{d} s_k = O((\ln n)^d).$$

Truncating The Integral

We assume that p has a decay property. Consider a few decay classes of $p(\eta; \theta_0)$ for well known kernels:

$$\begin{aligned} \mathcal{P}_{C,\mathbf{L}} &= \left\{ p(\boldsymbol{\eta}) \leq C \cdot \Pi_{k=1}^{d} \frac{1}{1 + L_{k}^{2} \eta_{k}^{2}} \right\} \\ \mathcal{P}_{C,\mathbf{L}}^{(r)} &= \left\{ p(\boldsymbol{\eta}) \leq C \cdot \left(1 + \|\mathbf{L}\boldsymbol{\eta}\|_{2}^{2}\right)^{-r} \right\} \\ \mathcal{E}_{C,\mathbf{L}}^{(2)} &= \left\{ p(\boldsymbol{\eta}) \leq C \cdot e^{-\|\mathbf{L}\boldsymbol{\eta}\|_{2}^{2}} \right\} \end{aligned}$$

where $\mathbf{L} = \mathbf{diag}(L_1, \dots, L_d) \ge 0$. For each class, we set \mathbf{U} s.t. the first integral error bound holds.

Truncating The Integral

$k_{\theta}(\mathbf{x}, \mathbf{x}')$	$p(oldsymbol{\eta};oldsymbol{ heta}_0)$	Decay Class
Non-isotropic Laplacian	$\pi^{-d} \prod_{i=1}^{d} \frac{\ell_k}{1+\ell_i^2 n_i^2}$	$\mathcal{P}_{C,\mathbf{L}}$
$\exp(-\ \mathbf{L}^{-1}(\mathbf{x}-\mathbf{x}')\ _1)$	$L_k = \ell_k$	$C = \pi^{-a} \prod_{k=1}^{d} \ell_k$
Matèrn	$\Gamma(\nu + d/2) \qquad \frac{d}{\prod} \ell$	$\mathcal{P}_{CL}^{(r)}$
$\frac{2^{1-\nu}}{\Gamma(\nu)}(\sqrt{2\nu}\ \mathbf{L}^{-1}(\mathbf{x} -$	$\frac{1}{\pi^{d/2}\Gamma(\nu)(2\nu)^{d/2}}\prod_{k=1}^{l} t_k^{l}$	$r = \nu + d/2$
$\mathbf{x}')\ _2)^{\nu} \cdot K_{\nu}(\sqrt{2\nu}\ \mathbf{L}^{-1}(\mathbf{x}-$	$\left(1+\left\ \mathbf{L}oldsymbol{\eta} ight\ _{2}^{2} ight)^{-(u+d/2)}$	$C = \frac{\Gamma(\nu + d/2)}{\prod_{k=1}^{d} \ell_k}$
$\mathbf{x}')\ _2)$	$L_k = \ell_k / \sqrt{2\nu}$	$\Gamma(\nu)(2\pi\nu)^{d/2} \prod_{k=1}^{d-1}$
Non-isotropic Gaussian	$(2\pi)^{-d/2} \prod^{d} \ell_k \exp(-\ \mathbf{L}\boldsymbol{\eta}\ _2^2/2)$	$\mathcal{E}_{C,\mathbf{L}}^{(2)}$
$\exp(-\ \mathbf{L}^{-1}(\mathbf{x}-\mathbf{x}')\ _2^2/2)$	$\substack{k=1\\ L_k = \ell_k}$	$C = (2\pi)^{-d/2} \prod_{k=1}^{d} \ell_k$

Truncating The Integral

$k_{\theta}(\mathbf{x}, \mathbf{x}')$	$p(oldsymbol{\eta};oldsymbol{ heta}_0)$	Decay Class
Non-isotropic Laplacian	$\pi^{-d} \prod_{k=1}^{d} \frac{\ell_k}{1+\ell^2}$	$\mathcal{P}_{C,\mathbf{L}}$
$\exp(-\ \mathbf{L}^{-1}(\mathbf{x}-\mathbf{x}')\ _1)$	$L_{k} = \ell_{k}$	$C = \pi^{-d} \prod_{k=1}^{d} \ell_k$
Matèrn	$\Gamma(\nu + d/2) = \frac{d}{\Pi} e_{\mu}$	$\mathcal{P}_{CL}^{(r)}$
$\frac{2^{1-\nu}}{\Gamma(\nu)}(\sqrt{2\nu}\ \mathbf{L}^{-1}(\mathbf{x} -$	$\frac{1}{\pi^{d/2}\Gamma(\nu)(2\nu)^{d/2}}\prod_{k=1}^{\ell_k}$	$r = \nu + d/2$
$\mathbf{x}')\ _2)^{\nu} \cdot K_{\nu}(\sqrt{2\nu}\ \mathbf{L}^{-1}(\mathbf{x}-$	$\left(1+\left\ \mathbf{L}\boldsymbol{\eta}\right\ _{2}^{2} ight)^{-\left(u+d/2 ight)}$	$C = \frac{\Gamma(\nu + d/2)}{\prod_{k=1}^{d} \ell_k}$
$\mathbf{x}')\ _2)$	$L_k = \ell_k/\sqrt{2\nu}$	$\Gamma(\nu)(2\pi\nu)^{d/2} \prod_{k=1}^{k} \prod_{k=1}^{k}$
Non-isotropic Gaussian	$(2\pi)^{-d/2} \prod^{d} \ell_k \exp(-\ \mathbf{L}\boldsymbol{\eta}\ _2^2/2)$	$\mathcal{E}_{C,\mathbf{L}}^{(2)}$
$\exp(-\ \mathbf{L}^{-1}(\mathbf{x}-\mathbf{x}')\ _2^2/2)$	$^{k=1} L_k = \ell_k$	$C = (2\pi)^{-d/2} \prod_{k=1}^{d} \ell_k$

1 For
$$\mathcal{P}_{C,\mathbf{L}}$$
: $U_k^{(\min)} = O(\cot(n^{-2/d}))$.
2 For $\mathcal{P}_{C,\mathbf{L}}^{(r)}$ and $r > d/2$: $U_k^{(\min)} = O(n^{2/(r-1)})$ for $d = 2$, and $O(n^{2/(2r-d)})$ otherwise.
3 For $\mathcal{E}_{C,\mathbf{L}}^{(2)}$: $U_k^{(\min)} = O(\sqrt{\ln n})$.

Spectrally Equivalent Kernel Approximations

- Scaling up GPR by $k_{m{ heta}} \approx \tilde{k}_{m{ heta}}$. How well \tilde{k} approximates k?
- It depends on how much $\mathcal{N}(\mu, \tilde{\mathbf{K}}(\mathbf{X}, \mathbf{X}))$ is different from $\mathcal{N}(\mu, \mathbf{K}(\mathbf{X}, \mathbf{X}))$.

Definition

We say $ilde{\mathbf{K}}$ is spectrally equivalent to \mathbf{K} if

$$(1-n^{-1})\mathbf{K} \preceq \tilde{\mathbf{K}} \preceq (1+n^{-1})\mathbf{K}$$
.

Spectrally Equivalent Kernel Approximations

- Scaling up GPR by $k_{\theta} \approx \tilde{k}_{\theta}$. How well \tilde{k} approximates k?
- It depends on how much $\mathcal{N}(\mu, \tilde{\mathbf{K}}(\mathbf{X}, \mathbf{X}))$ is different from $\mathcal{N}(\mu, \mathbf{K}(\mathbf{X}, \mathbf{X}))$.

Definition

We say $ilde{\mathbf{K}}$ is spectrally equivalent to \mathbf{K} if

$$(1-n^{-1})\mathbf{K} \preceq \tilde{\mathbf{K}} \preceq (1+n^{-1})\mathbf{K}$$
.

Lemma:

If $ilde{\mathbf{K}}$ is spectrally equivalent to \mathbf{K} , then

$$D_{\mathbf{KL}}\left(\mathcal{N}(\boldsymbol{\mu}, \mathbf{K}), \mathcal{N}(\boldsymbol{\mu}, \tilde{\mathbf{K}})\right) \leq 1 - O(n^{-1}).$$

Spectrally Equivalent Kernel Approximations

- Scaling up GPR by $k_{\theta} \approx \tilde{k}_{\theta}$. How well \tilde{k} approximates k?
- It depends on how much $\mathcal{N}(\mu, \tilde{\mathbf{K}}(\mathbf{X}, \mathbf{X}))$ is different from $\mathcal{N}(\mu, \mathbf{K}(\mathbf{X}, \mathbf{X}))$.

Definition

We say $\tilde{\mathbf{K}}$ is spectrally equivalent to \mathbf{K} if

$$(1-n^{-1})\mathbf{K} \preceq \tilde{\mathbf{K}} \preceq (1+n^{-1})\mathbf{K}$$
.

Lemma:

If $ilde{\mathbf{K}}$ is spectrally equivalent to \mathbf{K} , then

$$D_{\mathbf{KL}}\left(\mathcal{N}(\boldsymbol{\mu}, \mathbf{K}), \mathcal{N}(\boldsymbol{\mu}, \tilde{\mathbf{K}})\right) \leq 1 - O(n^{-1}).$$

• Use $(2n)^{-1}$ as the truncation error and as the quadrature error $(\Delta = n^{-1}).$

The approximation has a low-rank structure. Given a dataset $\mathbf{x}_1,\ldots,\mathbf{x}_n\in\mathcal{X}$, let

$$\mathbf{Z} \in \mathbb{C}^{n \times s}, \quad \mathbf{Z}_{lj} \coloneqq \varphi(\mathbf{x}_l, \boldsymbol{\eta}_j),$$

and

$$\mathbf{W}: \Theta \to \mathbb{R}^{s \times s}_+, \quad \mathbf{W}(\boldsymbol{\theta}) \coloneqq \mathbf{diag}\left(w_1(\boldsymbol{\theta}_0), \dots, w_s(\boldsymbol{\theta}_0)\right) \,.$$

Then, the approximate kernel matrix is

$$\tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{X}) = \sigma_f^2 \mathbf{Z} \mathbf{W}(\boldsymbol{\theta}) \mathbf{Z}^* + \sigma_n^2 \mathbf{I}_n \,.$$

• Hyperparameter learning: for each gradient iteration of:

 $\boldsymbol{\theta}^{\star} = \arg \max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})$

we compute $O(ns + s^3 + sd)$ vs $O(n^3)$. We have:

• Hyperparameter learning: for each gradient iteration of:

$$\boldsymbol{\theta}^{\star} = \arg \max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})$$

we compute $O(ns + s^3 + sd)$ vs $O(n^3)$. We have:

$$\begin{split} \mathcal{L}(\boldsymbol{\theta}) &= -\frac{1}{2} \mathbf{y}^{\mathsf{T}} \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{X})^{-1} \mathbf{y} - \frac{1}{2} \log \det \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{X}) - \frac{n}{2} \log 2\pi \\ \frac{\partial \mathcal{L}}{\partial \theta_i} &= -\frac{1}{2} \mathbf{Tr} \left(\tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{X})^{-1} \frac{\partial \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{X})}{\partial \theta_i} \right) \\ &+ \frac{1}{2} \mathbf{y}^{\mathsf{T}} \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{X})^{-1} \frac{\partial \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{X})}{\partial \theta_i} \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{X})^{-1} \mathbf{y} \,. \end{split}$$

where

$$\frac{\partial \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{X})}{\partial \sigma_{f}^{2}} = \mathbf{Z} \mathbf{W}(\boldsymbol{\theta}) \mathbf{Z}^{*}, \quad \frac{\partial \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{X})}{\partial \sigma_{n}^{2}} = \mathbf{I}_{n}, \quad \frac{\partial \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{X})}{\partial \theta_{i}} = \sigma_{f}^{2} \mathbf{Z} \frac{\partial \mathbf{W}(\boldsymbol{\theta})}{\partial \theta_{i}} \mathbf{Z}^{*} \,.$$

• Training: we compute

$$\mathbf{w} \coloneqq \mathbf{Z}^* \boldsymbol{\alpha} = \mathbf{W}(\boldsymbol{\theta}_0)^{-1} (\sigma_f^2 \mathbf{Z}^* \mathbf{Z} + \sigma_n^2 \mathbf{W}(\boldsymbol{\theta}_0)^{-1})^{-1} \mathbf{Z}^* \mathbf{y} \,.$$

in $O(ns^2)$ vs $O(n^3)$ for computing $\boldsymbol{\alpha} := \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{X})^{-1}\mathbf{y}$.

• Training: we compute

$$\mathbf{w} \coloneqq \mathbf{Z}^* \boldsymbol{\alpha} = \mathbf{W}(\boldsymbol{\theta}_0)^{-1} (\sigma_f^2 \mathbf{Z}^* \mathbf{Z} + \sigma_n^2 \mathbf{W}(\boldsymbol{\theta}_0)^{-1})^{-1} \mathbf{Z}^* \mathbf{y} \,.$$

in $O(ns^2)$ vs $O(n^3)$ for computing $\alpha := \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{X})^{-1}\mathbf{y}$.

• Prediction: Given a test set $\mathbf{x}_1^{(t)}, \dots, \mathbf{x}_t^{(t)}$, let

$$\mathbf{Z}^{(t)} \in \mathbb{C}^{t \times s}, \quad \mathbf{Z}_{lj}^{(t)} \coloneqq \varphi(\mathbf{x}_l^{(t)}, \boldsymbol{\eta}_j) \,.$$

We compute

$$\begin{split} \mathbf{y}_{\mathsf{mean}}^{(t)} &\coloneqq \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}^{(t)}, \mathbf{X}) \boldsymbol{\alpha} = \sigma_{f}^{2} \mathbf{Z}^{(t)} \mathbf{W}(\boldsymbol{\theta}) \mathbf{w} \\ \mathbf{Y}_{\mathsf{var}}^{(t)} &\coloneqq \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}^{(t)}, \mathbf{X}^{(t)}) - \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}^{(t)}, \mathbf{X}) \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{X})^{-1} \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{X}^{(t)}) \\ \mathsf{n} \ O(st) \ \mathsf{vs} \ O(nt) \ \mathsf{for} \ \mathsf{mean} \ \mathsf{and} \ O(s^{3} + ts^{2}) \ \mathsf{vs} \ O(n^{3} + tn^{2}) \ \mathsf{for} \end{split}$$

covariance.

• Training: we compute

$$\mathbf{w} \coloneqq \mathbf{Z}^* \boldsymbol{\alpha} = \mathbf{W}(\boldsymbol{\theta}_0)^{-1} (\sigma_f^2 \mathbf{Z}^* \mathbf{Z} + \sigma_n^2 \mathbf{W}(\boldsymbol{\theta}_0)^{-1})^{-1} \mathbf{Z}^* \mathbf{y} \,.$$

in $O(ns^2)$ vs $O(n^3)$ for computing $\alpha := \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{X})^{-1}\mathbf{y}$.

• Prediction: Given a test set $\mathbf{x}_1^{(t)}, \dots, \mathbf{x}_t^{(t)}$, let

$$\mathbf{Z}^{(t)} \in \mathbb{C}^{t \times s}, \quad \mathbf{Z}_{lj}^{(t)} \coloneqq \varphi(\mathbf{x}_l^{(t)}, \boldsymbol{\eta}_j) \,.$$

We compute

$$\begin{split} \mathbf{y}_{\text{mean}}^{(t)} &\coloneqq \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}^{(t)}, \mathbf{X}) \boldsymbol{\alpha} = \sigma_{f}^{2} \mathbf{Z}^{(t)} \mathbf{W}(\boldsymbol{\theta}) \mathbf{w} \\ \mathbf{Y}_{\text{var}}^{(t)} &\coloneqq \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}^{(t)}, \mathbf{X}^{(t)}) - \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}^{(t)}, \mathbf{X}) \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{X})^{-1} \tilde{\mathbf{K}}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{X}^{(t)}) \\ \text{n } O(st) \text{ vs } O(nt) \text{ for mean and } O(s^{3} + ts^{2}) \text{ vs } O(n^{3} + tn^{2}) \text{ for covariance.} \end{split}$$

Woodbury matrix identity

$$\left(\sigma_f^2 \mathbf{Z} \mathbf{W}(\boldsymbol{\theta}_0) \mathbf{Z}^* + \sigma_n^2 \mathbf{I}_n\right)^{-1} = \sigma_n^{-2} \left(\mathbf{I}_n - \sigma_f^2 \mathbf{Z} \left(\sigma_f^2 \mathbf{Z}^* \mathbf{Z} + \sigma_n^2 \mathbf{W}(\boldsymbol{\theta}_0)^{-1}\right)^{-1} \mathbf{Z}^* \right).$$

Main Competitive Method: RFF

• Consider a restricted class of **shift-invariant kernels** of the form:

$$k_{\theta}(\mathbf{x}, \mathbf{x}') = \sigma_f^2 k_0 (\mathbf{L}^{-1}(\mathbf{x} - \mathbf{x}')) + \sigma_n^2 \delta_{\mathbf{x}, \mathbf{x}'}$$

where $\mathbf{L} = \mathbf{diag}(L_1, \dots, L_d) \ge 0$ (i.e., $\boldsymbol{\theta}_0$).

Main Competitive Method: RFF

• Consider a restricted class of **shift-invariant kernels** of the form:

$$k_{\theta}(\mathbf{x}, \mathbf{x}') = \sigma_f^2 k_0 (\mathbf{L}^{-1}(\mathbf{x} - \mathbf{x}')) + \sigma_n^2 \delta_{\mathbf{x}, \mathbf{x}'}$$

where $\mathbf{L} = \mathbf{diag}(L_1, \dots, L_d) \ge 0$ (i.e., $\boldsymbol{\theta}_0$).

• The approximate kernel is

$$\tilde{k}_{\theta}^{(\mathsf{RFF})}(\mathbf{x}, \mathbf{x}') = \frac{\sigma_f^2}{s} \sum_{j=1}^s e^{-i(\mathbf{x} - \mathbf{x}')^{\mathsf{T}}} \eta_j + \sigma_n^2 \delta_{\mathbf{x}, \mathbf{x}'}$$

with the associated matrix

$$\tilde{\mathbf{K}}_{\boldsymbol{\theta}}^{(\mathsf{RFF})}(\mathbf{X},\mathbf{X}) = \sigma_f^2 \mathbf{Z}(\mathbf{L}) \mathbf{Z}(\mathbf{L})^* + \sigma_n^2 \mathbf{I}_n$$

where

$$\mathbf{Z}(\mathbf{L}) = \frac{1}{\sqrt{s}} \exp\left(-i\mathbf{X}\mathbf{L}^{-1}\mathbf{\Sigma}\right), \quad \mathbf{\Sigma} = \begin{bmatrix} \boldsymbol{\eta}_1 & \dots & \boldsymbol{\eta}_s \end{bmatrix}.$$

Comparison Between The Methods

Let I be the number of gradient computations for hyperparameter learning.

Table: Computational complexities (arithmetic operations) comparison between Gauss-Legendre Features and Random Fourier Features.

	Gauss-Legendre	Random Fourier
	Features	Features
Training	$O(ns^2)$	$O(ns^2)$
Prediction	O(st)	O(st)
Hyperparameter	$O(ns^2 + I(ns + s^3 + sd))$	$O(I(ns^2 + nsd^2))$
learning		

Other Types of Kernels

Semigroup kernels are defined on \mathbb{R}^d_+ , and can be written as

$$k_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \int_{\mathbb{R}^d_+} e^{-\boldsymbol{\eta}^{\mathsf{T}}(\mathbf{x} + \mathbf{x}')} p(\boldsymbol{\eta}; \lambda) d\boldsymbol{\eta} + \sigma_n^2 \delta_{\mathbf{x}, \mathbf{x}'}.$$

For example, the reciprocal semigroup kernel:

$$k_{\theta}(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \prod_{k=1}^d \frac{\lambda}{x_k + x'_k + \lambda} + \sigma_n^2 \delta_{\mathbf{x}, \mathbf{x}'}.$$

All the methodology above can be adapted also for these types of kernels.

Hyperparameter Domain

We define a hyperparameter domain Θ for each problem, e.g.

$$\Theta = \{ [\ell, \sigma_n^2, \sigma_f^2] \, : \, \ell_0 \leq \ell \leq \ell_1, \sigma_{n0}^2 \leq \sigma_n^2 \leq \sigma_{n1}^2, \sigma_{f1}^2 \leq \sigma_f^2 \leq \sigma_{f0}^2 \}$$

where $[\ell_0, \sigma_{f0}^2, \sigma_{n0}^2]$ is considered as the initial guess for optimization, for which we set the parameters \mathbf{U} and \mathbf{s} .

Synthetic Data

.

We consider $[-1,1] \times [-1,1]$ with n = 4096 training points and 400 test samples, generated by noisily sampling a predetermined function:

$$y_i = f^*(\mathbf{x}_i) + \tau_i , \tau_i \sim \mathcal{N}(\mathbf{0}, 0.3^2 \mathbf{I}_2)$$

$$f^*(x_1, x_2) = (\sin(x_1) + \sin(10e^{x_1}))(\sin(x_2) + \sin(10e^{x_2})).$$

Synthetic Data

Exact-GPR Learned Function

Natural Sound Modeling

The goal is to recover contiguous missing regions in a waveform with n = 59309 training points. The test consists of 691 samples. The Gaussian kernel is used for learning.

 $\times 10^4$

2

 $\times 10^4$

Google Daily High Stock Price

We consider a time series data of the daily high stock price of Google spanning 3797 days 19/08/2004 - 19/09/2019. The data is $x \in \{1, \ldots, 3797\}, y = \log(Stock_{high})$. The test consists of 502 days. We use the Matèrn kernel with $\nu = 5/2$.

1900 1950 2000

1800 2000 2200

Spatial Temperature Anomaly for East Africa in 2016

We consider MOD11A2 Land Surface Temperature (LST) 8-day composite 2D data of synoptic yearly mean for 2016 in the East Africa region. Training data consists 77404 random locations

 $\mathbf{x} \in \{(Longitude, Latitude)\}, y = \{temperature\}.$ The test consists of the remaining 6005 locations. We use the anisotropic Matèrn kernel with $\nu = 1$.

Thank you for your attention! Questions?

P. Fink Shustin and Haim Avron. Gauss-Legendre Features for Gaussian Process Regression, Journal of Machine Learning Research (2022).

